Algebra Comprehensive Exam — Spring 2015 January 16, 2015

Student Number:

Instructions: Complete five of the eight problems below, and **circle** their numbers exactly in the box below – the uncircled problems will **not** be graded.

1	2	3	4	5	6	7	8

Please note that a complete solution of a problem is preferable to partial progress on several problems.

Please write **only on the front side** of the solution pages. Work on the back of the page might not be graded.

- 1. (a) Prove that the polynomial $f(X) = X^6 + X^3 + 1 = (X^9 1)/(X^3 1)$ is irreducible over \mathbf{Q} .
 - (b) Find the factorization of f(X) over \mathbf{F}_{19} .
- 2. Which of the following rings are isomorphic? Give justifications.
 - (a) $R_1 = \mathbf{Z}[i]/(5)$
 - (b) $R_2 = \mathbf{F}_5[X]/(X^2 1)$
 - (c) $R_3 = \mathbf{F}_5[X]/(X^2+1)$

Here $\mathbf{Z}[i] = \{a + bi : a, b \in \mathbf{Z}\}$ is the ring of Gauss integers.

- 3. Let K be the splitting field over \mathbf{Q} for an *irreducible* polynomial of degree 3. What are the possibilities for $[K:\mathbf{Q}]$? Give an example to show that each possibility does occur.
- 4. Let p, q be prime numbers with p < q. Prove that there exists a non-cyclic group of order pq if and only if $p \mid q 1$.
- 5. Let G be a finite group, and let H be a subgroup of G of index p, with p prime. If n_H denotes the number of subgroups of G conjugate to H, prove that $n_H = 1$ if H is normal in G, and that $n_H = p$ otherwise.
- 6. Let I be a nonzero ideal in $\mathbf{Z}[X]$, and suppose that the lowest degree of a nonzero polynomial in I is n and that I contains some monic polynomial of degree n. Prove that I is a principal ideal.
- 7. (a) If n is prime and F(X) is an irreducible polynomial over \mathbf{Q} of degree n, prove that the Galois group of F over \mathbf{Q} contains an n-cycle.

- (b) If n is not prime, show that the Galois group in part (a) need not contain an n-cycle. [**Hint:** Consider the cyclotomic polynomial $\Phi_8(X)$.]
- 8. Let P be the vector space of all real polynomials and let $L: P \to P$ be the linear transformation defined by L(f) = f + f', where f' is the derivative of f. Prove that L is invertible.