Analysis Comprehensive Exam - Spring 2015 January 9, 2015

Student Number:

Instructions: Complete five of the eight problems below, and circle their numbers exactly in the box below - the uncircled problems will not be graded.

1	2	3	4	5	6	7	8

Please note that a complete solution of a problem is preferable to partial progress on several problems.
Please write only on the front side of the solution pages. Work on the back of the page might not be graded.

1. For $A, B \subset \mathbb{R}^{d}$ define $A+B=\{a+b: a \in A, b \in B\}$.
(a) Show that if A and B are F_{σ} sets, then $A+B$ is also an F_{σ} set.
(b) Give an example of Lebesgue null sets A and B in \mathbb{R}^{2} for which $A+B$ is not measurable.
2. Let (X, \mathcal{M}, μ) be a finite measure space and $E_{i}, i=1,2, \ldots$, be measurable subsets of X. Assume that for some $\alpha>0$ we have

$$
\sum_{i=1}^{\infty} \mu\left(E_{i}\right)^{\alpha}<\infty
$$

For which values of α can you say that

$$
\mu\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0
$$

Here $\lim \sup _{n \rightarrow \infty} E_{n}=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_{n}$.
3. Let $f \in L^{p}([0, \infty])$. Show that for $1<p<\infty$ we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{1-\frac{1}{p}}} \int_{0}^{x} f(t) d t=0
$$

4. Let (X, \mathcal{M}, μ) be a measure space and f, f_{1}, f_{2}, \ldots be nonnegative measurable functions such that $f_{n} \rightarrow f$ in measure.
(a) Prove that $\int f \leq \liminf \int f_{n}$.
(b) Give an example that shows that the inequality in (a) can be strict.
5. Show that $\int_{0}^{\infty} \frac{\sin ^{2} x}{x} e^{-s x} d x=\frac{\ln \left(1+4 / s^{2}\right)}{4}$ for $s>0$ by applying the Fubini's theorem to the function $f(x, y)=e^{-s x} \sin (2 x y)$ on $E=(0, \infty) \times(0,1)$.
6. Let H be an Hilbert space and $x_{k} \in H$ be a sequence such that x_{k} converges weakly to x. Show that there exists a subsequence $x_{k_{i}}$ such that

$$
\frac{1}{N} \sum_{i=1}^{N} x_{k_{i}}
$$

converges to x in norm.
7. Assume that f has bounded variation on $[a, b]$. Letting $V[f ; a, b]$ denote the total variation of f on $[a, b]$, prove that

$$
\int_{a}^{b}\left|f^{\prime}\right| \leq V[f ; a, b]
$$

8. Show that $L^{2}[0,1]$ is a meager (or, equivalently, of the first category) subset of $L^{1}[0,1]$.
