Analysis Comprehensive Exam — Spring 2015 January 9, 2015

Student Number:

Instructions: Complete five of the eight problems below, and **circle** their numbers exactly in the box below – the uncircled problems will **not** be graded.

Please note that a complete solution of a problem is preferable to partial progress on several problems.

Please write **only on the front side** of the solution pages. Work on the back of the page might not be graded.

- For A, B ⊂ ℝ^d define A + B = {a + b : a ∈ A, b ∈ B}.
 (a) Show that if A and B are F_σ sets, then A + B is also an F_σ set.
 (b) Give an example of Lebesgue null sets A and B in ℝ² for which A + B is not measurable.
- 2. Let (X, \mathcal{M}, μ) be a finite measure space and E_i , $i = 1, 2, \ldots$, be measurable subsets of X. Assume that for some $\alpha > 0$ we have

$$\sum_{i=1}^{\infty} \mu(E_i)^{\alpha} < \infty.$$

For which values of α can you say that

$$\mu\left(\limsup_{n\to\infty}E_n\right)=0.$$

Here $\limsup_{n\to\infty} E_n = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_n$.

3. Let $f \in L^p([0,\infty])$. Show that for 1 we have

$$\lim_{x \to \infty} \frac{1}{x^{1-\frac{1}{p}}} \int_0^x f(t)dt = 0.$$

- 4. Let (X, \mathcal{M}, μ) be a measure space and f, f_1, f_2, \ldots be nonnegative measurable functions such that $f_n \to f$ in measure.
 - (a) Prove that $\int f \leq \liminf \int f_n$.
 - (b) Give an example that shows that the inequality in (a) can be strict.

Analysis Comprehensive Exam — Spring 2015

- 5. Show that $\int_0^\infty \frac{\sin^2 x}{x} e^{-sx} dx = \frac{\ln(1+4/s^2)}{4}$ for s > 0 by applying the Fubini's theorem to the function $f(x, y) = e^{-sx} \sin(2xy)$ on $E = (0, \infty) \times (0, 1)$.
- 6. Let H be an Hilbert space and $x_k \in H$ be a sequence such that x_k converges weakly to x. Show that there exists a subsequence x_{k_i} such that

$$\frac{1}{N}\sum_{i=1}^{N}x_{k_i}$$

converges to x in norm.

7. Assume that f has bounded variation on [a, b]. Letting V[f; a, b] denote the total variation of f on [a, b], prove that

$$\int_{a}^{b} |f'| \le V[f;a,b].$$

8. Show that $L^{2}[0,1]$ is a meager (or, equivalently, of the first category) subset of $L^{1}[0,1]$.