Probability Comprehensive Exam - Spring 2014 January 7, 2015

Student Number:

Instructions: Complete five of the eight problems below, and circle their numbers exactly in the box below - the uncircled problems will not be graded.

1	2	3	4	5	6	7	8

Please note that a complete solution of a problem is preferable to partial progress on several problems.
Please write only on the front side of the solution pages. Work on the back of the page might not be graded.

1. Assume X is a symmetric random variable such that $\mathbb{E}\left[X^{2}\right]=1$ and $\mathbb{E}\left[X^{4}\right]=2$. Show that

$$
\mathbb{P}(X \geq 1) \leq \frac{14}{27}
$$

2. Assume that $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ is a sequence of iid random variables such that for some $\alpha<1 / 2$,

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{n^{\alpha}} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} m
$$

for some real number m (and the convergence is in the almost sure sense). Show that almost surely $X_{i}=0$.
3. Assume that (X, Y) is a joint normal vector with $\mathbb{E}[X]=\mathbb{E}[Y]=0$. Show that

$$
\mathbb{E}\left[X^{2} Y^{2}\right] \geq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]
$$

with equality if and only if X and Y are independent.
4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $(\mathcal{F})_{n \geq 0}$ is a filtration on it. Show that if $\left(M_{n}\right)_{n \geq 0}$ is a martingale such that $\left(M_{n}^{4}\right)_{n \geq 0}$ is also a martingale, then almost surely $M_{n}=M_{0}$ for any $n \geq 0$.
5. For a sequence $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ we know that

$$
\sum_{n=1}^{\infty} n \mathbb{E}\left[\left|X_{n}\right|\right]<\infty
$$

Show that the sequence $Y_{n}=X_{n}+X_{n+1}+\cdots+X_{10 n}$, converges almost surely and in L^{1} to 0 .
6. Assume $\left\{X_{n}\right\}_{n \geq 1}$ is a sequence of iid random variables with mean 0 and variance 1 . Show that

$$
Y_{n}=\frac{\sqrt{n} X_{1}+\sqrt{n-1} X_{2}+\sqrt{n-2} X_{3}+\cdots+X_{n}}{n}
$$

converges weakly (in distribution) to a normal $N(0,1 / 2)$.
7. Assume that $\left\{U_{n}\right\}_{n \geq 1}$ is a sequence of iid uniform random variables on $[0,1]$. Let $V_{n}=$ $\max \left\{U_{1}, U_{2}^{2}, \ldots, U_{n}^{n}\right\}$. Show that $\left(1-V_{n}\right) \ln (n)$ converges weakly (in distribution) to an exponential random variable with parameter 1 .
8. Let $\left\{X_{n}\right\}_{n \geq 1}$ be an iid sequence of positive random variables such that $E\left[X_{1}\right]<\infty$. Let

$$
N_{t}=\sup \left\{n: X_{1}+X_{2}+\cdots+X_{n} \leq t\right\}
$$

Show that

$$
\frac{N_{t}}{t} \xrightarrow[t \rightarrow \infty]{\text { a.s. }} \frac{1}{\mathbb{E}\left[X_{1}\right]}
$$

where the convergence is in almost sure sense.

