Algebra Comprehensive Exam Spring 2019

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let R be a commutative ring with 1 and M an ideal of R.
(a) Show that, if M is both maximal and principal, then there is no ideal I of R such that $M^{2} \subsetneq I \subsetneq M$.
(b) Give an example of a commutative ring R with 1 , a maximal ideal M (but not necessarily principal) of R and an ideal I with $M^{2} \subsetneq I \subsetneq M$.
2. Let K be a finite extension of a field F, and let P be a monic irreducible polynomial in $K[x]$. Prove that there is a nonzero $Q \in K[x]$ such that the product $P \cdot Q$ is in $F[x]$.
3. Let G be a finite group and let p be a prime number. Show that the following conditions are equivalent:
(a) The group G acts transitively on some set X such that the cardinality of X is at least 2 and relatively prime to p.
(b) The order of G is not a power of p.
4. Let R be a commutative ring. An element x is said to be nilpotent if $x^{k}=0$ for some non-negative integer k. Let P be the set of nilpotent elements. Show that P is an ideal, and that R / P has no non-zero nilpotent elements.
5. How many isomorphism classes of abelian groups of order 6^{4} are there? Explain your answer.
6. Is there an injective field homomorphism from \mathbf{F}_{4} to \mathbf{F}_{16} ? Is there an injective fields homomorphism from \mathbf{F}_{9} to \mathbf{F}_{27} ? Explain your answer.
7. Let M be an $n \times n$ matrix.
(a) Show that M is invertible if and only if its characteristic polynomial has a non-zero constant term.
(b) Show that if M is invertible, then its inverse may be expressed as a polynomial in M.
8. Let $f=x^{5}-12 x+6 \in \mathbf{Q}[x]$, and let G be the Galois group of its splitting field.
(a) Show that f is irreducible, and conclude that $|G|$ is divisible by 5 .
(b) Show that G contains a transposition (hint: complex conjugation).
(c) Prove that $G=S_{5}$, and conclude that f is not solvable by radicals.
