Algebra Comprehensive Exam September 2, 2016

Student Number:

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

Algebra Comp

- 1. Which of the following groups are isomorphic? Justify your answers
 - (i) the multiplicative group of units in $\mathbb{Z}[i]$ where $i^2 = -1$
 - (ii) the abelian group generated by a, b, c with relations $a^2 = c^5, a^2 = b^4 c^4$, and $b^2 = c$.
 - (iii) the subgroup of S_4 generated by (12)(34) and (13)(24)
 - (iv) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/12\mathbb{Z},\mathbb{Z}/20\mathbb{Z})$
- 2. Let R be an integral domain containing a field F. Show that if R has finite dimension as a vector space over F, then R is a field.
- 3. Let R be an integral domain. Suppose r is a nonzero, non-unit, irreducible element of R, and let $\langle r \rangle$ denote the ideal generated by r.
 - (a) If R is a UFD, is $R/\langle r \rangle$ also a UFD?
 - (b) If R is a PID, is $R/\langle r \rangle$ also a PID?
- 4. Let K/F be a Galois extension whose Galois group is the symmetric group S_3 . Is it true that K is the splitting field of an irreducible cubic polynomial over F?
- 5. An *algebraic integer* is the solution to a monic polynomial with coefficients in \mathbb{Z} .
 - (a) Show that α is an algebraic integer if and only if $\{1, \alpha, \alpha^2, \ldots\}$ generates a finite rank \mathbb{Z} -module.
 - (b) Let α be an algebraic integer and let $x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_0$ be a monic polynomial with coefficients in \mathbb{Z} which has α as a root and is irreducible in $\mathbb{Z}[x]$. Let $R = \mathbb{Z}[\alpha]$. Prove that α is a unit in R if and only if $a_0 = \pm 1$. (Hint: consider $1/x^n(x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_0)$.)
- 6. A graded ring is a ring R expressed as a direct sum of modules $R \cong \bigoplus_{i \in \mathbb{Z}} R_i$ such that the multiplication determines maps $R_i \otimes R_j \to R_{i+j}$. Elements of R_i for some *i* are called homogeneous. Let R be a graded ring such that every nonzero homogeneous element is invertible. Prove that either R is a field concentrated in degree 0 or $R \cong k[\beta^{\pm 1}]$, where k is field.
- 7. If G is a group acting on a set S, we say that G is *n*-transitive if $|S| \ge n$ and whenever x_1, \ldots, x_n are distinct elements of S and y_1, \ldots, y_n are distinct elements of S, there exists g in G such that $g(x_i) = y_i$ for all $i = 1, \ldots, n$. We denote by S^g the number of fixed points of g. Prove that G is 3-transitive if and only if

$$\frac{1}{|G|} \Sigma_{g \in G} (S^g)^3 = 5$$

Algebra Comp

- 8. Let V be a finite-dimensional vector space over a field F of characteristic p and let $T: V \to V$ be a linear transformation such that $T^p = I$ is the identity map.
 - (a) Show that T has an eigenvector in V.
 - (b) Show that T is upper triangular with respect to a suitable basis of V.