Algebra Comprehensive Exam September 2, 2016

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

1	2	3	4	5	6	7	8

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Which of the following groups are isomorphic? Justify your answers
(i) the multiplicative group of units in $\mathbb{Z}[i]$ where $i^{2}=-1$
(ii) the abelian group generated by a, b, c with relations $a^{2}=c^{5}, a^{2}=b^{4} c^{4}$, and $b^{2}=c$.
(iii) the subgroup of S_{4} generated by (12)(34) and (13)(24)
(iv) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 12 \mathbb{Z}, \mathbb{Z} / 20 \mathbb{Z})$
2. Let R be an integral domain containing a field F. Show that if R has finite dimension as a vector space over F, then R is a field.
3. Let R be an integral domain. Suppose r is a nonzero, non-unit, irreducible element of R, and let $\langle r\rangle$ denote the ideal generated by r.
(a) If R is a UFD, is $R /\langle r\rangle$ also a UFD?
(b) If R is a PID, is $R /\langle r\rangle$ also a PID?
4. Let K / F be a Galois extension whose Galois group is the symmetric group S_{3}. Is it true that K is the splitting field of an irreducible cubic polynomial over F ?
5. An algebraic integer is the solution to a monic polynomial with coefficients in \mathbb{Z}.
(a) Show that α is an algebraic integer if and only if $\left\{1, \alpha, \alpha^{2}, \ldots\right\}$ generates a finite rank \mathbb{Z}-module.
(b) Let α be an algebraic integer and let $x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{0}$ be a monic polynomial with coefficients in \mathbb{Z} which has α as a root and is irreducible in $\mathbb{Z}[x]$. Let $R=\mathbb{Z}[\alpha]$. Prove that α is a unit in R if and only if $a_{0}= \pm 1$. (Hint: consider $\left.1 / x^{n}\left(x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{0}\right).\right)$
6. A graded ring is a ring R expressed as a direct sum of modules $R \cong \oplus_{i \in \mathbb{Z}} R_{i}$ such that the multiplication determines maps $R_{i} \otimes R_{j} \rightarrow R_{i+j}$. Elements of R_{i} for some i are called homogeneous. Let R be a graded ring such that every nonzero homogeneous element is invertible. Prove that either R is a field concentrated in degree 0 or $R \cong k\left[\beta^{ \pm 1}\right]$, where k is field.
7. If G is a group acting on a set S, we say that G is n-transitive if $|S| \geq n$ and whenever x_{1}, \ldots, x_{n} are distinct elements of S and y_{1}, \ldots, y_{n} are distinct elements of S, there exists g in G such that $g\left(x_{i}\right)=y_{i}$ for all $i=1, \ldots, n$. We denote by S^{g} the number of fixed points of g. Prove that G is 3 -transitive if and only if

$$
\frac{1}{|G|} \Sigma_{g \in G}\left(S^{g}\right)^{3}=5 .
$$

8. Let V be a finite-dimensional vector space over a field F of characteristic p and let $T: V \rightarrow V$ be a linear transformation such that $T^{p}=I$ is the identity map.
(a) Show that T has an eigenvector in V.
(b) Show that T is upper triangular with respect to a suitable basis of V.
