
Algebra Comprehensive Exam

September 2, 2016

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below – the uncircled
problems will not be graded.

1 2 3 4 5 6 7 8

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. Which of the following groups are isomorphic? Justify your answers

(i) the multiplicative group of units in Z[i] where i2 = −1

(ii) the abelian group generated by a, b, c with relations a2 = c5, a2 = b4c4, and b2 = c.

(iii) the subgroup of S4 generated by (1 2)(3 4) and (1 3)(2 4)

(iv) HomZ(Z/12Z,Z/20Z)

2. Let R be an integral domain containing a field F . Show that if R has finite dimension
as a vector space over F , then R is a field.

3. Let R be an integral domain. Suppose r is a nonzero, non-unit, irreducible element of
R, and let 〈r〉 denote the ideal generated by r.

(a) If R is a UFD, is R/〈r〉 also a UFD?

(b) If R is a PID, is R/〈r〉 also a PID?

4. Let K/F be a Galois extension whose Galois group is the symmetric group S3. Is it true
that K is the splitting field of an irreducible cubic polynomial over F?

5. An algebraic integer is the solution to a monic polynomial with coefficients in Z.

(a) Show that α is an algebraic integer if and only if {1, α, α2, . . .} generates a finite
rank Z-module.

(b) Let α be an algebraic integer and let xn +an−1x
n−1 +an−2x

n−2 + . . .+a0 be a monic
polynomial with coefficients in Z which has α as a root and is irreducible in Z[x].
Let R = Z[α]. Prove that α is a unit in R if and only if a0 = ±1. (Hint: consider
1/xn(xn + an−1x

n−1 + an−2x
n−2 + . . .+ a0).)

6. A graded ring is a ring R expressed as a direct sum of modules R ∼= ⊕i∈ZRi such that the
multiplication determines maps Ri ⊗ Rj → Ri+j. Elements of Ri for some i are called
homogeneous. Let R be a graded ring such that every nonzero homogeneous element is
invertible. Prove that either R is a field concentrated in degree 0 or R ∼= k[β±1], where
k is field.

7. If G is a group acting on a set S, we say that G is n-transitive if |S| ≥ n and whenever
x1, . . . , xn are distinct elements of S and y1, . . . , yn are distinct elements of S, there exists
g in G such that g(xi) = yi for all i = 1, . . . , n. We denote by Sg the number of fixed
points of g. Prove that G is 3-transitive if and only if

1

|G|
Σg∈G(Sg)3 = 5.
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8. Let V be a finite-dimensional vector space over a field F of characteristic p and let
T : V → V be a linear transformation such that T p = I is the identity map.

(a) Show that T has an eigenvector in V .

(b) Show that T is upper triangular with respect to a suitable basis of V .
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