Algebra Comprehensive Exam Fall 2018

Student Number:		
-----------------	--	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let G be a finite group of order n, and let $\rho: G \to \text{Sym}(G)$ be the homomorphism that arises from G acting on itself by left translation. Let g in G have order m. Prove that the sign of $\rho(g)$ is $(-1)^{n+n/m}$
 - 2. Let G be a group of order 2k with k odd. Prove that G is a semi-direct product $N \rtimes \mathbb{Z}/2\mathbb{Z}$ where N has order k. (Hint: Using part (1) construct a nontrivial homomorphism $G \to \mathbb{Z}/2\mathbb{Z}$.)
- 2. 1. Explicitly exhibit an element σ of $G = \operatorname{GL}_2 \mathbb{Z}/7\mathbb{Z}$ of order 8.
 - 2. Describe (with proof) the structure of a 2-Sylow subgroup of G.

(Hint: Think about the multiplicative subgroup of the field with 49 elements, and the action of the nontrivial automorphism of this field.)

- 3. Let $F \subseteq E$ be an algebraic extension. Show that $F \subseteq E$ is primitive (i.e., $E = F[\theta]$) if and only if the set of intermediate fields $L, F \subseteq L \subseteq E$, is finite.
- 4. 1. Let ζ be a primitive 7th root of unity in **C** and let $\beta = \zeta + \zeta^2 + \zeta^4$. Show that $[\mathbf{Q}(\beta) : \mathbf{Q}] = 2$, and that $\sqrt{-7} \in \mathbf{Q}(\beta)$. (Hint: find a linear relation between $1,\beta$, and β^2 .)
 - 2. Let *E* be the splitting field of the polynomial $f(x) = x^{14} + 7$ over **Q** and let α be a root of f(x) in **C**. Show that $E = \mathbf{Q}[\zeta, \alpha]$ and find the degrees $[E : \mathbf{Q}], [E : \mathbf{Q}(\zeta)],$ and $[E : \mathbf{Q}(\alpha)]$.
 - 3. Write down elements σ and τ of orders 6 and 7, respectively, in Gal (E/\mathbf{Q}) by explicitly giving the values $\sigma(\zeta)$, $\sigma(\alpha)$, and $\tau(\zeta)$, $\tau(\alpha)$.
- 5. Prove that every matrix A over an algebraically closed field k can be uniquely written as a sum $A = A_s + A_n$ such that
 - A_s is diagonalizable,
 - A_n is nilpotent (i.e. has all eigenvalues 0), and,
 - $A_n A_s = A_s A_n$.

(Hint: First prove that for any finite set a_1, a_2, \ldots, a_n of pairwise distinct elements of k and corresponding set of positive integers m_1, m_2, \ldots, m_n , there exists a polynomial p such that $p(T) \equiv a_i \mod (T - a_i)^{m_i}$ and set $A_s = p(A)$ and $A_n = A - p(A)$.)

- 6. Let p be the smallest prime dividing the order of a finite group G. If $P \in \text{Syl}_p(G)$ and P is cyclic prove that $N_G(P) = C_G(P)$.
- 7. Prove that $f(x) = x^4 + 1$ is reducible modulo every prime p but irreducible in $\mathbb{Q}[x]$.

8. Using the fact that there are infinitely many primes congruent to 1 mod m for any integer m, prove that every finite abelian group appears as the Galois group of some finite Galois extension of \mathbb{Q} .