Algebra Comprehensive Exam
 Fall 2018

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. 2. Let G be a finite group of order n, and let $\rho: G \rightarrow \operatorname{Sym}(G)$ be the homomorphism that arises from G acting on itself by left translation. Let g in G have order m. Prove that the sign of $\rho(g)$ is $(-1)^{n+n / m}$
1. Let G be a group of order $2 k$ with k odd. Prove that G is a semi-direct product $N \rtimes \mathbb{Z} / 2 \mathbb{Z}$ where N has order k. (Hint: Using part (1) construct a nontrivial homomorphism $G \rightarrow \mathbb{Z} / 2 \mathbb{Z}$.)
2. 3. Explicitly exhibit an element σ of $G=\mathrm{GL}_{2} \mathbb{Z} / 7 \mathbb{Z}$ of order 8 .
1. Describe (with proof) the structure of a 2-Sylow subgroup of G.
(Hint: Think about the multiplicative subgroup of the field with 49 elements, and the action of the nontrivial automorphism of this field.)
2. Let $F \subseteq E$ be an algebraic extension. Show that $F \subseteq E$ is primitive (i.e., $E=F[\theta]$) if and only if the set of intermediate fields $L, F \subseteq L \subseteq E$, is finite.
3. 4. Let ζ be a primitive 7 th root of unity in \mathbf{C} and let $\beta=\zeta+\zeta^{2}+\zeta^{4}$. Show that $[\mathbf{Q}(\beta): \mathbf{Q}]=2$, and that $\sqrt{-7} \in \mathbf{Q}(\beta)$. (Hint: find a linear relation between $1, \beta$, and β^{2}.)
1. Let E be the splitting field of the polynomial $f(x)=x^{14}+7$ over \mathbf{Q} and let α be a root of $f(x)$ in \mathbf{C}. Show that $E=\mathbf{Q}[\zeta, \alpha]$ and find the degrees $[E: \mathbf{Q}],[E: \mathbf{Q}(\zeta)]$, and $[E: \mathbf{Q}(\alpha)]$.
2. Write down elements σ and τ of orders 6 and 7 , respectively, in $\operatorname{Gal}(E / \mathbf{Q})$ by explicitly giving the values $\sigma(\zeta), \sigma(\alpha)$, and $\tau(\zeta), \tau(\alpha)$.
3. Prove that every matrix A over an algebraically closed field k can be uniquely written as a sum $A=A_{s}+A_{n}$ such that

- A_{s} is diagonalizable,
- A_{n} is nilpotent (i.e. has all eigenvalues 0), and,
- $A_{n} A_{s}=A_{s} A_{n}$.
(Hint: First prove that for any finite set $a_{1}, a_{2}, \ldots, a_{n}$ of pairwise distinct elements of k and corresponding set of positive integers $m_{1}, m_{2}, \ldots, m_{n}$, there exists a polynomial p such that $p(T) \equiv a_{i} \bmod \left(T-a_{i}\right)^{m_{i}}$ and set $A_{s}=p(A)$ and $A_{n}=A-p(A)$.)

6. Let p be the smallest prime dividing the order of a finite group G. If $P \in \operatorname{Syl}_{p}(G)$ and P is cyclic prove that $N_{G}(P)=C_{G}(P)$.
7. Prove that $f(x)=x^{4}+1$ is reducible modulo every prime p but irreducible in $\mathbb{Q}[x]$.
8. Using the fact that there are infinitely many primes congruent to $1 \bmod m$ for any integer m, prove that every finite abelian group appears as the Galois group of some finite Galois extension of \mathbb{Q}.
