Analysis Comprehensive Exam Spring 2019

Student Number:

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

NOTES:

- ||x|| denotes the Euclidean norm of a point $x \in \mathbf{R}^d$.
- All functions in this exam are (extended) real-valued.
- The exterior Lebesgue measure of $E \subseteq \mathbf{R}^d$ is denoted by $|E|_e$, and if E is measurable then its Lebesgue measure is |E|.
- The characteristic function of a set A is denoted by χ_A .

Spring 2019

1. For $n \ge 1$, let $f_n : [0,1] \to \mathbf{R}$ be integrable. Assume that

$$\lim_{k \to \infty} f_k = f \text{ a.e. in } [0,1],$$

where f is integrable over [0, 1]. Assume also that $\forall \varepsilon > 0$, there exists $\delta > 0$ such that

$$E \subset [0,1] \text{ and } |E| < \delta \implies \left| \int_E f_k \right| < \varepsilon \text{ for all } k \ge 1.$$

Prove that

$$\lim_{k \to \infty} \int_0^1 |f_k - f| = 0.$$
 (1)

2. (a) Assume that μ is a bounded linear functional on $L^2(\mathbf{R})$. Prove directly that $F(x) = \mu(\chi_{[0,x]})$ is absolutely continuous on [0, 1]. (Directly means that you should not appeal to the Riesz Representation Theorem in this part.)

(b) Use the Riesz Representation Theorem to find a formula for F'(x) that holds for a.e. x.

3. Let μ and ν be Borel measures on $[0, \infty)$ with finite total mass, so that $\mu([0, \infty)) < \infty$ and $\nu([0, \infty)) < \infty$. Let $r \in (0, 1)$, s > 0 and ω be the measure defined by

$$\omega = r\mu + s\nu.$$

Show that μ is absolutely continuous with respect to ω . Let g denote the Radon-Nikodym derivative of μ with respect to ω , so that

$$\int f \ d\mu = \int fg \ d\omega$$

for every integrable function f. Show that

$$0 \leq g \leq \frac{1}{r}$$
 a.e. (μ)

4. Assume $E \subseteq \mathbf{R}^d$ is measurable, $f: E \to [0, \infty)$ is measurable and finite a.e., and $g: [0, \infty) \to [0, \infty)$ is absolutely continuous on every finite interval [0, b] and is monotone increasing on $[0, \infty)$. Prove that

$$\int_E g \circ f \ge \int_0^\infty g'(t)\,\omega(t)\,dt$$

where $\omega(t) = |\{f > t\}|.$

Hint: First show that $\int_0^{f(x)} g'(t) dt \le g(f(x))$.

5. Let $\phi : \mathbf{Z} \to (0, \infty)$, that is, ϕ is a positive function defined on the integers. Assume also that

$$\sum_{k=1}^{\infty} k^2 \phi\left(k\right)^2 < \infty.$$

Let $\mathcal{A} \subset \mathbf{R}^2$ be the set of all $(x, y) \in \mathbf{R}^2$ such that for infinitely many $k \ge 1$, there exist a pair of rational numbers $\left(\frac{j}{k}, \frac{\ell}{k}\right)$ with

$$\left| (x,y) - \left(\frac{j}{k}, \frac{\ell}{k}\right) \right| < \phi(k).$$
(1)

Show that $|\mathcal{A}| = 0$.

- 6. Let X and Y be Banach spaces. Suppose that $A: S \to Y$ is a bounded linear operator whose domain S is a dense subspace of X. Prove that there exists a unique bounded linear operator $B: X \to Y$ such that B(x) = A(x) for all $x \in S$. Show further that the operator norm of B equals the operator norm of A.
- 7. Let $f : \mathbf{R}^n \to \mathbf{R}$ be integrable in \mathbf{R}^n . Let $K : \mathbf{R}^n \to [0, \infty)$ be nonnegative, measurable, and bounded in \mathbf{R}^n , with

$$\int_{\mathbf{R}^n} K = 1$$

and $K(\mathbf{t}) = 0$ for $|\mathbf{t}| \ge 1$. For h > 0, and $\mathbf{x} \in \mathbf{R}^n$, define

$$\Phi_{h}[f](\mathbf{x}) = h^{-n} \int_{\mathbf{R}^{n}} f(\mathbf{x} + \mathbf{t}) K\left(\frac{\mathbf{t}}{h}\right) d\mathbf{t}.$$

For h > 0, let

$$\Omega(f;h) = \sup_{|\mathbf{t}| \le h} \int_{\mathbf{R}^n} |f(\mathbf{x} + \mathbf{t}) - f(\mathbf{x})| \, d\mathbf{x}$$

Prove that

$$\int_{\mathbf{R}^{n}} \left| \Phi_{h}\left[f \right] \left(\mathbf{x} \right) - f\left(\mathbf{x} \right) \right| d\mathbf{x} \leq \Omega\left(f; h \right),$$

and hence that

$$\lim_{h \to 0+} \int_{\mathbf{R}^{n}} \left| \Phi_{h} \left[f \right] \left(\mathbf{x} \right) - f \left(\mathbf{x} \right) \right| d\mathbf{x} = \mathbf{0}$$

8. Given $f \in L^2(0,\infty)$, prove that

$$F(x) = \int_0^\infty \frac{f(t)}{1+xt} \, dt$$

is continuous and differentiable on $(0, \infty)$.