Analysis Comprehensive Exam
Spring 2019

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.

NOTES:
e ||z]| denotes the Euclidean norm of a point z € R%.
e All functions in this exam are (extended) real-valued.

e The exterior Lebesgue measure of £ C R? is denoted by |E|., and if £ is measurable
then its Lebesgue measure is | E].

e The characteristic function of a set A is denoted by X 4.
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1. Forn > 1, let f, : [0,1] — R be integrable. Assume that

lim f, = f ae. in [0,1],
k—o0
where f is integrable over [0, 1]. Assume also that Ve > 0, there exists 0 > 0 such that

EC|0,1] and |E| < = <eforall k> 1.

Ji
E

Prove that

lim / o fl=o. 1)

2. (a) Assume that u is a bounded linear functional on L*(R). Prove directly that F(x) =
#(X[0,47) is absolutely continuous on [0, 1]. (Directly means that you should not appeal
to the Riesz Representation Theorem in this part.)

(b) Use the Riesz Representation Theorem to find a formula for F’(z) that holds for
a.e. x.

3. Let p and v be Borel measures on [0, 00) with finite total mass, so that u ([0, 00)) < oo
and v ([0,00)) < co. Let r € (0,1),s > 0 and w be the measure defined by

w=ru+ sv.

Show that p is absolutely continuous with respect to w. Let g denote the Radon-Nikodym
derivative of p with respect to w, so that

[au= [ 19

for every integrable function f. Show that

1
0<g<-—ae(u
r
4. Assume E C R? is measurable, f: E — [0,00) is measurable and finite a.e., and
g: [0,00) — [ 00) is absolutely continuous on every finite interval [0, b] and is monotone

1ncreasmg on [0 00). Prove that
/gOf 2/ gt w(t)dt,
E 0
where w(t) = [{f > t}|.

Hint: First show that ff(x (t)dt < g(f(z)).
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5. Let ¢ : Z — (0,00), that is, ¢ is a positive function defined on the integers. Assume also
that

> Ko (k) < o
k=1

Let A C R? be the set of all (r,y) € R? such that for infinitely many k > 1, there exist
a pair of rational numbers (%, %) with

(z,y) — (% 2)

6. Let X and Y be Banach spaces. Suppose that A: S — Y is a bounded linear operator
whose domain S is a dense subspace of X. Prove that there exists a unique bounded
linear operator B: X — Y such that B(x) = A(x) for all x € S. Show further that the
operator norm of B equals the operator norm of A.

< ¢ (k). (1)

Show that |A| = 0.

7. Let f : R" — R be integrable in R™. Let K : R™ — [0,00) be nonnegative, measurable,
and bounded in R", with
K=1
R7L
and K (t) =0 for |[t| > 1. For h > 0, and x € R", define

Oyf](x)=h" | flx+t)K (%) dt.
R
For h > 0, let
Q(fih) =sup [ |f(x+6)~ f (o] dx.
[t|<h JR"
Prove that

[ 12001 = 7 )l dx <2.(7i),
and hence that

Jm [ 1@0[£]00 — f ()] dx = 0.

8. Given f € L?*(0,00), prove that

F(x)—/ooo IO g

1+ at

is continuous and differentiable on (0, 00).
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