Analysis Comprehensive Exam August 26, 2016

Student Number:

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

Notations used throughout the exam:

For $E \subset \mathbb{R}^d$, the exterior Lebesgue measure of E is written $|E|_e$.

If E is measurable then its Lebesque measure is denoted |E|.

We denote the dual space of a Banach space V by V^* , i.e. V^* is the collection of all bounded linear functionals acting on V.

Analysis Comp

- 1. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $0 < |E| < \infty$.
 - (i) For each $x \in \mathbb{R}$ and r > 0 define $I_r(x) = [x r/2, x + r/2]$ and $h_r(x) = |E \cap I_r(x)|$. Prove that for a fixed r > 0, the function $h_r(x)$ is continuous at every $x \in \mathbb{R}$.
 - (ii) Prove that there exists $r_0 > 0$ such that for each $0 < r < r_0$ there exists a closed interval $I \subset \mathbb{R}$ which satisfies |I| = r and $|E \cap I| = \frac{r}{2}$.
- 2. Show that for $A \subset \mathbb{R}^d$, A is Lebesgue measurable if and only if for every $\epsilon > 0$ there exists a Lebesgue measurable set $E \subset \mathbb{R}^d$ such that

$$|A \triangle E|_e < \epsilon.$$

3. Let $E_1, ..., E_n$ be Lebesgue measurable subsets of [0, 1] and define

 $S_q = \{x \in [0,1] : x \text{ belongs to at least } q \text{ of the sets } E_i\}.$

Show that for each $1 \leq q \leq n$, S_q is Lebesgue measurable and there exists k such that

$$\frac{q |S_q|}{n} \le |E_k|.$$

4. Prove that if $f(x), xf(x) \in L^1(\mathbb{R})$ then the function

$$F(w) = \int_{\mathbb{R}} f(x) \sin(wx) \, dx$$

is defined, continuous, and differentiable at every point $w \in \mathbb{R}$. (You may wish to use the identity $\sin(\alpha) - \sin(\beta) = 2\sin(\frac{\alpha-\beta}{2})\cos(\frac{\alpha+\beta}{2})$).

5. Let $f \in L^p(\mathbb{R}), 1 \leq p < \infty$. Given y > 0 denote $A_y := \{x \in \mathbb{R} : |f(x)| > y\}$. Prove that

$$\int_{\mathbb{R}} |f(x)|^p dx = p \int_0^\infty y^{p-1} |A_y| dy.$$

6. Let μ and ν be two σ -finite positive measures on a measurable space (X, \mathfrak{M}) . Show that there exists a measurable function $f: X \to \mathbb{R}$ such that for each $E \in \mathfrak{M}$,

$$\int_E (1-f) \, d\mu = \int_E f \, d\nu.$$

Does the above statement hold for every finite signed measures μ and ν ?

Analysis Comp

- 7. Let \mathcal{H} be a Hilbert space and $\{f_n\}_{n\in\mathbb{N}}$ be a sequence in \mathcal{H} . Prove that the following two statements are equivalent
 - (i) There exists C > 0 such that for every $f \in \mathcal{H}$,

$$\sum_{n=1}^{\infty} |\langle f, f_n \rangle|^2 \le C ||f||^2.$$

(ii) There exists C > 0 such that for every sequence $\{a_n\}_{n \in \mathbb{N}}$ with finitely many nonzero terms

$$\left\|\sum_{n=1}^{\infty} a_n f_n\right\|^2 \le C \sum_{n=1}^{\infty} |a_n|^2.$$

8. Let V be a Banach space and let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence in V. For $m\in\mathbb{N}$ let

$$W_m = \overline{\operatorname{span}} \{ f_n \}_{n \neq m}.$$

Prove that the following two statements are equivalent.

(i) There exists d > 0 such that for every $m \in \mathbb{N}$,

$$d \leq \operatorname{dist}(f_m, W_m).$$

(ii) There exist M > 0 and a sequence $\{g_n\}_{n \in \mathbb{N}}$ in V^* such that for every $n \in \mathbb{N}$ we have $||g_n||_{V^*} < M$ and for each $m \in \mathbb{N}$,

$$g_n(f_m) = \delta_{nm}.$$