Analysis Comprehensive Exam Fall 2018

Student Number:

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

NOTES:

- All functions in this exam are (extended) real-valued.
- The exterior Lebesgue measure of $E \subseteq \mathbf{R}^d$ is denoted by $|E|_e$, and if E is measurable then its Lebesgue measure is |E|.
- The characteristic function of a set A is denoted by χ_A .

Analysis Comp

1. For each irrational number x, it can be shown that there exist infinitely many fractions p/q with p and q relatively prime such that $|x - p/q| \le 1/q^2$. Let E be the set of all $x \in \mathbf{R}$ for which there exist infinitely many fractions p/q with p and q relatively prime such that

$$\left|x - \frac{p}{q}\right| \le \frac{1}{q^3}$$

Prove that |E| = 0.

- 2. Suppose that $f \in L^1(\mathbf{R})$ is such that $\int_{-\infty}^{\infty} f\phi = 0$ for every integrable simple function ϕ that satisfies $\int_{-\infty}^{\infty} \phi = 0$. Prove that f = 0 a.e.
- 3. Choose $f \in L^1(\mathbf{R})$, and for each $\lambda > 0$ define $f_{\lambda}(x) = \lambda f(\lambda x)$. Prove that

$$\lim_{\lambda \to 1} \|f - f_\lambda\|_1 = 0.$$

- 4. Let f be an integrable function defined on a measurable set $E \subseteq \mathbf{R}^d$. Show that if $\{A_n\}_{n \in \mathbf{N}}$ is a sequence of measurable subsets of E such that $|A_n| \to 0$, then $\int_{A_n} f \to 0$.
- 5. Let $f: \mathbf{R} \to \mathbf{R}$ be absolutely continuous on every finite interval [a, b]. Assume that $f' \in L^2(\mathbf{R})$ and $f \in L^2(\mathbf{R})$, and prove that $\lim_{x \to \pm \infty} f(x) = 0$.
- 6. (a) Given t > 0, use Fubini's theorem to compute $\int_0^t \int_0^\infty e^{-xy} \sin(x) \, dy \, dx$ in two different ways, and then use this to compute the exact value of $\lim_{t \to \infty} \int_0^t \frac{\sin(x)}{x} \, dx$.

Hint:
$$\int_0^\infty \frac{1}{1+y^2} \, dy = \frac{\pi}{2}.$$

- (b) Show that the function $f(x) = \sin(x)/x$ is not Lebesgue integrable on $[0, \infty)$.
- (c) Explain why part (b) does not affect the applicability of Fubini's theorem in (a).
- 7. Let $E \subseteq \mathbf{R}^d$ be measurable with $0 < |E| < \infty$. Assume that:
 - (a) $f_n \in L^1(E)$ for every n,
 - (b) there exists a function f such that $f_n \to f$ pointwise a.e., and
 - (c) there exists some $1 such that <math>\sup_n \|f_n\|_p < \infty$.

Prove that $f \in L^1(E)$ and $f_n \to f$ in L^1 -norm.

8. Let *H* be a (complex) Hilbert space with inner product $\langle \cdot, \cdot \rangle$. Let *a* be a fixed complex number, and assume that $T: H \to H$ is a linear operator that satisfies

$$\langle x, Ty \rangle = a \langle Tx, y \rangle, \quad \text{all } x, y \in H.$$

Show that T is bounded.

Hint: The case $|a| \neq 1$ is easy.

Note: The case a = 1 is related to the Hellinger–Toeplitz theorem, but you must provide a direct proof, you cannot appeal to that theorem.