Differential Equations Comprehensive Exam Spring 2019

Student Number:
 \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Consider a nonlinear oscillator $\ddot{q}+q^{3}=0$. Does the initial condition $q(0)=2, \dot{q}(0)=0$ correspond to a periodic solution? If yes, what is its period? (If you encounter an integral that is difficult to evaluate, no need to compute it out).
2. Consider $\dot{x}=x^{1 / 3}$ with $x(0)=0$. What can you say about the value of $x(1)$?
3. Consider the system

$$
\left\{\begin{array}{l}
\dot{x}=x\left(1-4 x^{2}-y^{2}\right)-\frac{1}{2} y(1+x) \\
\dot{y}=y\left(1-4 x^{2}-y^{2}\right)+2 x(1+x)
\end{array} .\right.
$$

Show that all trajectories except the one from the origin approach the ellipse $4 x^{2}+y^{2}=1$ as $t \rightarrow+\infty$. (Hint: consider Lyapunov function $V=\left(1-4 x^{2}-y^{2}\right)^{2}$.
4. Consider $x=\sin t$ and $y=\cos t$ as a periodic solution to $\dot{x}=y, \dot{y}=-\left(x^{2}+y^{2}\right) x$. What is the stability of this periodic orbit?
5. Assume that $u \in C^{2,1}((0, \pi) \times(0, \infty))$ solves

$$
\left\{\begin{array}{l}
u_{t}-u_{x x}=u, x \in(0, \pi), t>0 \\
u(0, t)=u(\pi, t)=0, t>0 \\
u(x, 0)=f(x), \text { for } x \in(0, \pi)
\end{array}\right.
$$

where $f(x) \in C_{0}^{\infty}(0, \pi)$, that is $f(x)$ has compact support in $(0, \pi)$. Prove that

$$
\lim _{t \rightarrow \infty}\|u(x, t)-C \sin (x)\|_{L_{x}^{2}([0, \pi])}^{2}=0
$$

for some constant C.
6. Assume that $f(x) \in C^{1}(\mathbf{R})$ is uniformly bounded function with bounded and continuous first order derivatives. Consider the following initial value probem

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=-u, x \in \mathbf{R}, t>0 \\
u(x, 0)=f(x)
\end{array}\right.
$$

Determine the sufficient and necessary conditions on $f(x)$ for this problem to have a unique global smooth solution. For any C^{1} solution $u(x, t)$ of this problem, prove that

$$
\lim _{t \rightarrow \infty}\|u(x, t)\|_{L_{x}^{\infty}(\mathbf{R})}=0 .
$$

7. For any finite constant $c \in \mathbf{R}$, prove that there is at most one solution $u \in C^{2}([0,1] \times$ $[0, \infty)$) to the following problem

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}+c u_{t}=f(x, t), x \in(0,1), t>0 \\
u(0, t)=u(1, t)=0, t>0 \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x), \text { for } x \in(0,1)
\end{array}\right.
$$

8. Let $B(0,1)$ be the unit ball in $\mathbf{R}^{\mathbf{3}}$ centered at the origin. Find a bounded solution to the following Dirichlet problem outside $B(0,1)$

$$
\left\{\begin{array}{l}
-\Delta u(x)=0,|x|>1 \\
u(x)=\frac{2}{\sqrt{7+4 \sqrt{3} x_{3}}}, \text { for }|x|=1
\end{array}\right.
$$

