Differential Equations Comprehensive Exam August 31, 2016

Student Number:
 \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Prove that the system

$$
\left\{\begin{array}{l}
\dot{x}=x-y-x^{3}, \\
\dot{y}=x+y-y^{3}
\end{array}\right.
$$

has at least one limit cycle.
2. Let $f(x, t)$ be a continuous function on $\mathbb{R} \times \mathbb{R}$. Assume that the initial value problem

$$
\left\{\begin{array}{l}
\dot{x}=f(x, t) \tag{1}\\
x(0)=0
\end{array}\right.
$$

admits two solutions $x_{1}(t)$ and $x_{2}(t)$ with $x_{1}(t) \leq x_{2}(t)$ for $t \in[0, t]$. Show that for every $y \in\left[x_{1}(\bar{t}), x_{2}(\bar{t})\right]$ there is a solution \bar{x} of (1) defined in $[0, \bar{t}]$ with $\bar{x}(\bar{t})=y$ and $\bar{x}(t) \in\left[x_{1}(t), x_{2}(t)\right]$.
3. Consider the Initial Value Problem

$$
\left\{\begin{array}{l}
\dot{x}=A x+g(x) \\
x(0)=x_{0}
\end{array}\right.
$$

where $x \in \mathbb{R}^{n}, A$ is a $n \times n$ negative definite matrix and g is a smooth function from \mathbb{R}^{n} to \mathbb{R}^{n} with

$$
\lim _{x \rightarrow 0} \frac{g(x)}{\|x\|}=0
$$

Let $\lambda=\max _{i} \lambda_{i}$ where λ_{i} are the eigenvalue of A. Show that for every ϵ there exists δ such that if $\left\|x_{0}\right\| \leq \delta$ then $\|x(t)\| \leq e^{(\lambda+\epsilon) t}\left\|x_{0}\right\|$ for every $t>0$.
4. Let $f_{i}(x), i=1,2$, be two smooth functions from \mathbb{R}^{n} to \mathbb{R}^{n} and let $\Phi_{i}(t, x)$ be the flow generated by $f_{i}(x)$, that is, $\Phi_{i}(t, x)$ solves

$$
\left\{\begin{array}{l}
\dot{\Phi}_{i}(t, x)=f_{i}\left(\Phi_{i}(t, x)\right) \\
\Phi_{i}(0, x)=x
\end{array}\right.
$$

Show that

$$
\Phi_{2}(t, x)-\Phi_{1}(t, x)=\int_{0}^{t} \mathcal{D}_{2}\left(t-s, \Phi_{1}(s, x)\right)\left(f_{2}-f_{1}\right)\left(\Phi_{1}(s, x)\right) d s
$$

where

$$
\mathcal{D}_{2}(t, x)=\frac{\partial \Phi_{2}(t, x)}{\partial x}
$$

5. Find the solution of the differential equation

$$
\begin{equation*}
x_{2} \partial_{x_{1}} u\left(x_{1}, x_{2}\right)+x_{1} \partial_{x_{2}} u\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}-x_{2}^{2}\right) u\left(x_{1}, x_{2}\right) \tag{2}
\end{equation*}
$$

in the region $x_{1}>0,\left|x_{2}\right|<x_{1}$ that satisfies

$$
u\left(x_{1}, 0\right)=h\left(x_{1}\right) .
$$

6. Let $u(x, t)$ be a classical solution to the initial value problem

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u(x, 0)=f(x) \quad \text { in } \mathbb{R}^{n} \\
u_{t}(x, 0)=g(x) \quad \text { in } \mathbb{R}^{n}
\end{array}\right.
$$

If both f, g vanish for $|x|<R$, prove that $u(0, t)=0$ for all $t \in[0, R)$.
7. Solve the Burger's equation

$$
u_{t}+u u_{x}=0
$$

with initial data

$$
u(x, 0)= \begin{cases}1+x & \text { if } x<0 \\ 0 & \text { if } x>0\end{cases}
$$

8. Let D be a bounded domain in \mathbb{R}^{n} with smooth boundary ∂D, and let $a(x)$ be a continuous function on \bar{D}. Assume that u is a classical solution to

$$
\begin{aligned}
& u_{t}=\Delta u+a(x) u \quad \text { in } D \times(0, \infty) \\
& u=0 \quad \text { on } \partial D \times(0, \infty)
\end{aligned}
$$

with non-negative initial condition. Prove that u remains nonnegative for all $t>0$.

