Discrete Mathematics Comprehensive Exam Fall 2018

Student Number:

Instructions: Complete 5 of the 7 problems, and circle their numbers below - the uncircled problems will not be graded.
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let G be a graph and $V_{o}=\left\{v \in V(G): d_{G}(v)=1(\bmod 2)\right\}$. Show that G has $\left|V_{o}\right| / 2$ pairwise edge-disjoint paths linking vertices in V_{0}.
2. Let G be a graph and k be a positive integer. Show that $\chi(G) \leq k$ if, and only if, G has an acyclic orientation with no directed path of length k.
3. Suppose that G is a plane graph and assume that G contains a Hamilton cycle. Prove that the faces of G are 4-colorable.
4. Prove that every triangle-free graph G with n vertices and m edges has a bipartite subgraph with at least $\frac{4 m^{2}}{n^{2}}$ edges. (Hint: Consider $G-x-N(x)$ for $x \in V(G)$.)
5. Fix $k \geq 2$. Using a probabilistic approach, prove that if G is a graph with $m \geq 1$ edges then G has a k-partite subgraph with at least $\frac{k-1}{k} \cdot m$ edges.
6. Let $G_{n, p}$ be the binomial random graph with vertex set [n], where each of the $\binom{n}{2}$ edges of the complete graph K_{n} is included, independently, with probability p. Given a graph H, let $\alpha(H)$ denote the size of the largest independent set of H. Given $p=p(n) \in(0,1]$, prove that $\mathbb{P}\left(\alpha\left(G_{n, p}\right)<6 \ln n / p\right) \rightarrow 1$ as $n \rightarrow \infty$.
7. Let $G_{n, p}$ be the binomial random graph with vertex set $[n]$, where each of the $\binom{n}{2}$ edges of the complete graph K_{n} is included, independently, with probability p. Let \mathcal{E}_{k} denote the event that $G_{n, p}$ contains some collection of k edge-disjoint triangles. Give a complete proof of the estimate $\mathbb{P}\left(\mathcal{E}_{k}\right) \leq\left(\binom{n}{3} p^{3}\right)^{k} / k$!
(Remark: only submit a solution to the aforementioned estimate. If you have an idea how to improve this estimate for $k=x\binom{n}{3} p^{3}$ with $x \in(1, e)$, please email warnke@math. gatech.edu after the exam.)
