Discrete Mathematics Comprehensive Exam Spring 2019

Student Number:

Instructions: Complete 5 of the 7 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let k be a positive integer and G be a simple graph, and assume that G does not contain k pairwise disjoint cycles. Show that $\chi(G) \leq 3k 1$.
- 2. Let G and H be two simple graphs and assume $\Delta(H) \leq 3$. Show that if G contains H as a minor then G contains H as a topological minor.
- 3. Let G be a graph and assume that G contains a Hamilton cycle. Show that G can be written as the union of two even subgraphs (not necessarily edge-disjoint).
- 4. Let G be a maximal plane graph and $G \not\cong K_4$. Show that G is 3-face-colorable.
- 5. The Ramsey number R(k) is the smallest integer n such that in any two coloring of the edges of a complete graph on n vertices K_n by red and blue contains a monochromatic K_k (a complete subgraph on k vertices whose edges are all colored with the same color).
 - (A) Show that if $\binom{n}{k} 2^{1 \binom{k}{2}} < 1$, then R(k) > n.
 - (B) Using (A), deduce that $R(k) = \Omega(k2^{k/2})$ for large k.

[Remark: this argument in fact gives $R(k) > (1 - o(1)) \cdot k2^{k/2} \cdot 1/(e\sqrt{2})$ as $k \to \infty$.]

- 6. The Ramsey number R(k) is the smallest integer n such that in any two coloring of the edges of a complete graph on n vertices K_n by red and blue contains a monochromatic K_k (a complete subgraph on k vertices whose edges are all colored with the same color).
 - (A) Show that $R(k) > n {n \choose k} 2^{1 {k \choose 2}}$. (B) Using (A), deduce that $R(k) = \Omega(k2^{k/2})$ for large k. [Remark: this argument in fact gives $R(k) > (1 - o(1)) \cdot k2^{k/2} \cdot 1/e$ as $k \to \infty$.]
- 7. The Ramsey number R(k) is the smallest integer n such that in any two coloring of the edges of a complete graph on n vertices K_n by red and blue contains a monochromatic K_k (a complete subgraph on k vertices whose edges are all colored with the same color).
 - (A) Show that if $e\binom{k}{2}\binom{n-2}{k-2}2^{1-\binom{k}{2}} < 1$, then R(k) > n. (Hint: use LLL.)
 - (B) Using (A), deduce that $R(k) = \Omega(k2^{k/2})$ for large k.

[Remark: this argument in fact gives $R(k) > (1 - o(1)) \cdot k2^{k/2} \cdot \sqrt{2}/e$ as $k \to \infty$.]