Discrete Mathematics Comprehensive Exam Spring 2019

Student Number:

Instructions: Complete 5 of the 7 problems, and circle their numbers below - the uncircled problems will not be graded.
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let k be a positive integer and G be a simple graph, and assume that G does not contain k pairwise disjoint cycles. Show that $\chi(G) \leq 3 k-1$.
2. Let G and H be two simple graphs and assume $\Delta(H) \leq 3$. Show that if G contains H as a minor then G contains H as a topological minor.
3. Let G be a graph and assume that G contains a Hamilton cycle. Show that G can be written as the union of two even subgraphs (not necessarily edge-disjoint).
4. Let G be a maximal plane graph and $G \not \not K_{4}$. Show that G is 3 -face-colorable.
5. The Ramsey number $R(k)$ is the smallest integer n such that in any two coloring of the edges of a complete graph on n vertices K_{n} by red and blue contains a monochromatic K_{k} (a complete subgraph on k vertices whose edges are all colored with the same color).
(A) Show that if $\binom{n}{k} 2^{1-\binom{k}{2}}<1$, then $R(k)>n$.
(B) Using (A), deduce that $R(k)=\Omega\left(k 2^{k / 2}\right)$ for large k.
[Remark: this argument in fact gives $R(k)>(1-o(1)) \cdot k 2^{k / 2} \cdot 1 /(e \sqrt{2})$ as $k \rightarrow \infty$.]
6. The Ramsey number $R(k)$ is the smallest integer n such that in any two coloring of the edges of a complete graph on n vertices K_{n} by red and blue contains a monochromatic K_{k} (a complete subgraph on k vertices whose edges are all colored with the same color).
(A) Show that $R(k)>n-\binom{n}{k} 2^{1-\binom{k}{2} \text {. }}$
(B) Using (A), deduce that $R(k)=\Omega\left(k 2^{k / 2}\right)$ for large k.
[Remark: this argument in fact gives $R(k)>(1-o(1)) \cdot k 2^{k / 2} \cdot 1 / e$ as $k \rightarrow \infty$.]
7. The Ramsey number $R(k)$ is the smallest integer n such that in any two coloring of the edges of a complete graph on n vertices K_{n} by red and blue contains a monochromatic K_{k} (a complete subgraph on k vertices whose edges are all colored with the same color).
(A) Show that if $e\binom{k}{2}\binom{n-2}{k-2} 2^{1-\binom{k}{2}}<1$, then $R(k)>n$. (Hint: use LLL.)
(B) Using (A), deduce that $R(k)=\Omega\left(k 2^{k / 2}\right)$ for large k.
[Remark: this argument in fact gives $R(k)>(1-o(1)) \cdot k 2^{k / 2} \cdot \sqrt{2} / e$ as $k \rightarrow \infty$.]

Discrete Mathematics Comp
Spring 2019

Discrete Mathematics Comp
Spring 2019

Discrete Mathematics Comp
Spring 2019

Discrete Mathematics Comp

Discrete Mathematics Comp
Spring 2019

