Probability Comprehensive Exam Spring 2019

Student Number: \square

Instructions: Complete 5 of the 9 problems, and circle their numbers below - the uncircled problems will not be graded.

1	2	3	4	5	6	7	8	9

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let X be a non-negative random variable, such that $0<\mathbb{E} X<+\infty$, and let $0<x<1$. Show that

$$
\mathbb{P}(X \geq x \mathbb{E} X) \geq(1-x)^{2} \frac{(\mathbb{E} X)^{2}}{\mathbb{E}\left(X^{2}\right)}
$$

2. If $\left(X_{n}\right)_{n \geq 1}$ is a sequence of random variables, then there exists a sequence $\left(c_{n}\right)_{n \geq 1}$ with $c_{n} \rightarrow \infty$, such that

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} \frac{X_{n}}{c_{n}}=0\right)=1
$$

3. Assume that $\left\{X_{n}\right\}_{n \geq 1}$ are random variables such that
4. $E\left[X_{n}\right]=0$ and $\mathbb{E}\left[X_{n}^{2}\right] \leq 1$ for any $n \geq 1$
5. $\mathbb{E}\left[X_{i} X_{j}\right] \leq 0$ for any $i \neq j$.

Show that for any sequence $\left\{a_{n}\right\}_{n \geq 1} \subset[1 / 2,2]$,

$$
\frac{a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}}{a_{1}+a_{2}+\cdots+a_{n}} \underset{n \rightarrow \infty}{\mathbb{P}} 0 .
$$

4. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of non -negative uniformly integrable random variables such that, as $n \rightarrow+\infty, X_{n} \Rightarrow X$. Show that X is integrable and that $\lim _{n \rightarrow+\infty} \mathbb{E} X_{n}=\mathbb{E} X$.
5. If $X_{1}, X_{2}, \ldots, X_{n}$ are iid exponential random variables with parameter 1 , compute the almost sure limit of

$$
\frac{1}{n} \sum_{i=1}^{n} e^{-X_{k}-2 X_{k+1}-3 X_{k+2}}
$$

as n tends to infinity.
6. Assume $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space such that there exist $X_{1}, X_{2}: \Omega \rightarrow \mathbb{R}$ two independent Bernoulli random variables such that $\mathbb{P}\left(X_{i}=0\right)=\mathbb{P}\left(X_{i}=1\right)=1 / 2$. Show that Ω must have at least 4 elements.
Give an example with Ω having 4 elements together with a sigma algebra such that on it we can define two independent Bernoulli as above.
Can you generalize this?
7. If X, Y are two random variables such that $X \geq Y$ and X, Y have the same distribution, then $X=Y$ almost surely.
8. Assume that $X_{1}, X_{2}, \ldots, X_{n}$ are iid with density $f(x)=\frac{2}{x^{3}}$ for $x \geq 1$ and 0 otherwise. Define

$$
M_{n}=\frac{1}{n} \max \left\{X_{1}, \sqrt{2} X_{2}, \ldots, \sqrt{n} X_{n}\right\}
$$

Show that X_{n} converges in distribution and find the limit.
9. Let X be a finite mean random variable, let \mathbf{F} be a σ-field and let G be a σ-field independent of $\sigma(\sigma(X), \mathbf{F})$. (As usual, $\sigma(X)$ is the σ-field generated by X and $\sigma(\sigma(X), \mathbf{F})$ is the σ-field generated by $\sigma(X)$ and \mathbf{F}.) Is it true or false that $\mathbb{E}(X \mid \sigma(\mathbf{F}, \mathbf{G}))=\mathbb{E}(X \mid \mathbf{F})$?

