Probability Comprehensive Exam Fall 2018

Student Number: \square

Instructions: Complete 5 of the 9 problems, and circle their numbers below - the uncircled problems will not be graded.

1	2	3	4	5	6	7	8	9

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Use the SLLN to find the following limit:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \cdots \int_{0}^{1} \frac{x_{1}^{2}+\cdots+x_{n}^{2}}{x_{1}+\cdots+x_{n}} d x_{1} \ldots d x_{n}
$$

2. Suppose X_{1}, \ldots, X_{n} are i.i.d. random variables such that $\mathbb{P}\left\{X_{j}=+1\right\}=\mathbb{P}\left\{X_{j}=-1\right\}=$ $1 / 2$. Let $S_{k}:=X_{1}+\cdots+X_{k}, k=1, \ldots, n$. Prove that

$$
\mathbb{P}\left\{\max _{1 \leq k \leq n} S_{k} \geq l\right\}=2 \mathbb{P}\left\{S_{n}>l\right\}+\mathbb{P}\left\{S_{n}=l\right\}
$$

3. Let $\left\{Z_{n}\right\}$ be i.i.d. standard normal r.v. and let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers. Prove that $\sum_{n=1}^{\infty} a_{n} Z_{n}^{2}<+\infty$ a.s. if and only if $\sum_{n=1}^{\infty} a_{n}<+\infty$.
4. Let φ be the characteristic function of r.v. X. Show that

$$
\psi_{1}(t)=|\varphi(t)|^{2} \text { and } \psi_{2}(t)=\frac{1}{t} \int_{0}^{t} \varphi(s) d s
$$

are also characteristic functions.
5. For distribution functions F, G on the real line, define

$$
L(F, G):=\inf \{\varepsilon>0: \forall t \in \mathbb{R} F(t) \leq G(t+\varepsilon)+\varepsilon, G(t) \leq F(t+\varepsilon)+\varepsilon\}
$$

It is known that L is a metric. Prove that $L\left(F_{n}, F\right) \rightarrow 0$ as $n \rightarrow \infty$ if and only if F_{n} converges weakly to F.
6. Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be identically distributed (not necessarily independent!) random variables with finite first moment. Is the following,

$$
n^{-1} \mathbb{E} \max _{1 \leq k \leq n}\left|X_{k}\right| \longrightarrow 0
$$

as $n \rightarrow+\infty$, true or false?
7. Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be iid random variables with common characteristic function φ and let $S_{n}=\sum_{k=1}^{n} X_{k}$. Show that if φ is differentiable at 0 with $\varphi^{\prime}(0)=i \mu$, then, as $n \rightarrow+\infty, S_{n} / n \rightarrow \mu$, in probability.
8. Let X and Y be two independent and positive random variables with respective density f_{X} and f_{Y} and let $g:(0,+\infty) \longrightarrow(0,+\infty)$, be a bounded Borel function. Find

$$
\mathbb{E}\left(\left.g\left(\frac{X}{Y}\right) \right\rvert\, Y\right)
$$

the conditional expectation of $g(X / Y)$ given Y and then infer that $V=X / Y$ has a density that you will identify.
9. Let X, Y, Z be random variables such that (X, Z) and (Y, Z) are identically distributed. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a Borel function such that $f(X)$ is integrable.
(i) Show that $\mathbb{E}(f(X) \mid Z)=\mathbb{E}(f(Y) \mid Z)$, a.s.
(ii) Let $T_{1}, T_{2}, \ldots T_{n}$ be iid random variables with finite first moment and let $T=T_{1}+$ $\cdots+T_{n}$. Using (i) show that

$$
\mathbb{E}\left(T_{1} \mid T\right)=\frac{T}{n}
$$

which shows that $\mathbb{E}\left(T_{1} \mid T\right)=T / n$.

