Topology Comprehensive Exam Spring 2019

lent Number:

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let X be a path-connected space. Show that $\pi_1(X, x_0)$ is abelian if and only if all basepoint-changing homomorphisms β_{γ} depend only on the endpoints of the path γ . Recall that for a path γ from x_0 to x_1 , the homomorphism $\beta_{\gamma} \colon \pi_1(X, x_1) \to \pi_1(X, x_0)$ is defined to be $\beta_{\gamma}([f]) = [\gamma \cdot f \cdot \overline{\gamma}]$.
- 2. Let M be a compact oriented n-manifold without boundary. Let η be a (n-1)-form on M. Show that there is some point on M such that the n-form $d\eta$ is zero
- 3. Use algebraic topology to prove that $\mathbf{Z}_2 * \mathbf{Z}$, i.e., the free product of \mathbf{Z}_2 and \mathbf{Z} , has two subgroups of index two that are not isomorphic to one another.
- 4. Suppose that M and N are smooth manifolds of dimension m and n, respectively, and S a submanifold of N of codimension greater than m+1. Given functions $f_i; M \to N, i = 0, 1$ such that $f_i(M) \cap S = \emptyset$, show that f_0 and f_1 are smoothly homotopic as maps to N if and only if they are smoothly homotopic as maps to N S.
- 5. Let $M(n, \mathbf{R})$ be the set of all n by n matrices (recall that it can be identified with \mathbf{R}^{n^2} by choosing an ordering of the entries of the matrix). Let $SL(n, \mathbf{R})$ be the set of matrices with determinant 1. Show that $SL(n, \mathbf{R})$ is a manifold and compute its dimension. What is the tangent space to $SL(N, \mathbf{R})$ at the identity matrix? Hint: You may use the fact that the derivative of the determinate map at A applied to a tangent vector B is given by $d(det)_A(B) = det(A)tr(A^{-1}B)$.
- 6. Recall that the suspension SX of a space X is the quotient of $X \times I$ obtained by collapsing $X \times \{0\}$ to one point and $X \times \{1\}$ to another point. Let X be any space (not necessarily path-connected). Show that S(S(X)) is simply-connected.
- 7. Let M and N be two smooth manifolds and $f: M \to N$ a smooth function. If M is compact and f is an immersion, then shown that $f^{-1}(x)$ is finite for any $x \in N$.
- 8. Let M and N be closed oriented manifolds of dimensions m and n, respectively. Show that the de Rham cohomology space $H^n_{DR}(M \times N)$ is non-zero.