Topology Comprehensive Exam Fall 2018

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

Topology Comp

- 1. Suppose that $\pi : \widetilde{X} \to X$ is a covering space for which $\pi^{-1}(x)$ is countable for some $x \in X$. If X has the structure of a smooth manifold, then show that \widetilde{X} can be given the structure of a smooth manifold so that π is an immersion. (Be sure to check that \widetilde{X} satisfies all the properties necessary to be a manifold.)
- 2. Let M and W be compact m and (n + m) dimensional oriented manifolds, respectively. Suppose that S is a compact oriented submanifold of W of dimension n. (The manifolds M, W, and S are all without boundary.) Let $f : M \to W$ be a smooth function that is transverse to S. Show that the intersection number I(f, S) of f and S vanishes in the following two cases
 - 1. M is the boundary of a compact manifold Y and f extends over Y.
 - 2. S is the boundary of a compact submanifold of W.
- 3. Let G be a topological group. Recall that means that G is a topological space and a group such that the maps $\mu: G \times G \to G: (g, h) \mapsto g \cdot h$ and $i: G \to G: g \mapsto g^{-1}$ are continuous (here $g \cdot h$ is group multiplication). Given two loops $\gamma, \eta: [0, 1] \to G$ based at the identity element e in G we denote the concatenation of the paths by $\gamma * \eta$ and we define the path $\gamma \cdot \eta$ to be

$$\gamma \cdot \eta : [0,1] \to G : t \mapsto \gamma(t) \cdot \eta(t).$$

Prove the following:

- 1. $\gamma * \eta$ is homotopic to $\gamma \cdot \eta$ by a homotopy that is fixed at the end points.
- 2. the fundamental group $\pi_1(G, e)$ is abelian.
- 4. Thinking of the projective plan $\mathbb{R}P^2$ as $\mathbb{R}^3 \{(0,0,0)\}$ modulo the equivalence relation $(x, y, z) \sim (tx, ty, tz)$ for some non-zero t. The function $\tilde{f}(x, y, z) = \frac{x^2 + 2y^2}{x^2 + y^2 + z^2}$ descends to a well-defined function $f : \mathbb{R}P^2 \to \mathbb{R}$. Prove the function is smooth and find its critical points. Show that one of the critical points is non-degenerate. (Actually all are non-degenerate, that is f is a Morse function, but the computation would take too long. So just verify that one of the critical points you found is non-degenerate.)
- 5. Write down an explicit closed 1–form on $\mathbb{R}^2 \{(0,0)\}$ that is not exact. Carefully prove the form has both these properties.
- 6. Let X and Y be two non-empty spaces. If X is path connected and Y has two path components then show that the join X * Y is simply-connected (this is true without the hypothesis on Y, but you only need to prove it in the stated case). Recall the join is the quotient space of $X \times Y \times [0, 1]$ where each of the sets $X \times \{y\} \times \{1\}$, for $y \in Y$, and $\{x\} \times Y \times \{0\}$, for $x \in X$, is collapsed to a separate point.

Topology Comp

- 7. Let $f: X \to Y$ and $g: Y \to Z$ be covering spaces with Z connected and $g^{-1}(z)$ finite for some $z \in Z$. Show that $g \circ f: X \to Z$ is a covering space. What goes wrong with the proof if $g^{-1}(z)$ is infinite?
- 8. Suppose that M and N are both smooth oriented compact n-manifolds (without boundary) and $f: M \to N$ is a smooth map. If there is an n-form η on N such that $\int_M f^*\eta \neq 0$ then show that f is surjective.