Topology Comprehensive Exam Fall 2018

Student Number:
 \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Suppose that $\pi: \widetilde{X} \rightarrow X$ is a covering space for which $\pi^{-1}(x)$ is countable for some $x \in X$. If X has the structure of a smooth manifold, then show that \widetilde{X} can be given the structure of a smooth manifold so that π is an immersion. (Be sure to check that \widetilde{X} satisfies all the properties necessary to be a manifold.)
2. Let M and W be compact m and $(n+m)$ dimensional oriented manifolds, respectively. Suppose that S is a compact oriented submanifold of W of dimension n. (The manifolds M, W, and S are all without boundary.) Let $f: M \rightarrow W$ be a smooth function that is transverse to S. Show that the intersection number $I(f, S)$ of f and S vanishes in the following two cases
3. M is the boundary of a compact manifold Y and f extends over Y.
4. S is the boundary of a compact submanifold of W.
5. Let G be a topological group. Recall that means that G is a topological space and a group such that the maps $\mu: G \times G \rightarrow G:(g, h) \mapsto g \cdot h$ and $i: G \rightarrow G: g \mapsto g^{-1}$ are continuous (here $g \cdot h$ is group multiplication). Given two loops $\gamma, \eta:[0,1] \rightarrow G$ based at the identity element e in G we denote the concatenation of the paths by $\gamma * \eta$ and we define the path $\gamma \cdot \eta$ to be

$$
\gamma \cdot \eta:[0,1] \rightarrow G: t \mapsto \gamma(t) \cdot \eta(t)
$$

Prove the following:

1. $\gamma * \eta$ is homotopic to $\gamma \cdot \eta$ by a homotopy that is fixed at the end points.
2. the fundamental group $\pi_{1}(G, e)$ is abelian.
3. Thinking of the projective plan $\mathbf{R} P^{2}$ as $\mathbf{R}^{3}-\{(0,0,0)\}$ modulo the equivalence relation $(x, y, z) \sim(t x, t y, t z)$ for some non-zero t. The function $\widetilde{f}(x, y, z)=\frac{x^{2}+2 y^{2}}{x^{2}+y^{2}+z^{2}}$ descends to a well-defined function $f: \mathbf{R} P^{2} \rightarrow \mathbf{R}$. Prove the function is smooth and find its critical points. Show that one of the critical points is non-degenerate. (Actually all are non-degenerate, that is f is a Morse function, but the computation would take too long. So just verify that one of the critical points you found is non-degenerate.)
4. Write down an explicit closed 1-form on $\mathbf{R}^{2}-\{(0,0)\}$ that is not exact. Carefully prove the form has both these properties.
5. Let X and Y be two non-empty spaces. If X is path connected and Y has two path components then show that the join $X * Y$ is simply-connected (this is true without the hypothesis on Y, but you only need to prove it in the stated case). Recall the join is the quotient space of $X \times Y \times[0,1]$ where each of the sets $X \times\{y\} \times\{1\}$, for $y \in Y$, and $\{x\} \times Y \times\{0\}$, for $x \in X$, is collapsed to a separate point.
6. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be covering spaces with Z connected and $g^{-1}(z)$ finite for some $z \in Z$. Show that $g \circ f: X \rightarrow Z$ is a covering space. What goes wrong with the proof if $g^{-1}(z)$ is infinite?
7. Suppose that M and N are both smooth oriented compact n-manifolds (without boundary) and $f: M \rightarrow N$ is a smooth map. If there is an n-form η on N such that $\int_{M} f^{*} \eta \neq 0$ then show that f is surjective.
