Algebra Comprehensive Exam January 13, 2017

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Find representatives for the (distinct) conjugacy classes of matrices with characteristic polynomial

$$
f(\lambda)=\left(\lambda^{2}+1\right)^{2}
$$

in (1) $\mathrm{GL}_{4}(\mathbf{Q})$ and $(2) \mathrm{GL}_{4}(\mathbf{C})$.
2. Consider the polynomial

$$
f(x)=\frac{x^{23}-1}{x-1}=\sum_{n=0}^{22} x^{n} .
$$

Determine the number of irreducible factors of $f(x)$ over (1) $\mathbf{Q}(2) \mathbf{F}_{2}(3) \mathbf{F}_{2048}$.
3. Which of the following are the class equations for a group G of order 10 ?

$$
1+1+1+2+5 \quad 1+2+2+5 \quad 1+2+3+4 \quad 1+1+2+2+2+2
$$

Give an example of a group with each possible class equation, and explain why the rest are impossible.
4. Prove or disprove: the following rings are isomorphic:

$$
\mathbf{F}_{5}[x] /\left\langle x^{4}+x^{2}+1\right\rangle \quad \mathbf{F}_{5}[x] /\left\langle x^{4}-x^{3}+x^{2}-1\right\rangle
$$

5. Give an example of a module M over $\mathbf{Z}[x]$ which is torsion free (for all $f \in \mathbf{Z}[x]$ and $m \in M, f \cdot m=0$ implies $f=0$ or $m=0$), but not free.
6. Find the Galois group of the splitting field of the polynomial $f(x)=x^{3}-x+1$:
7. over \mathbf{F}_{2}
8. over \mathbf{R}
9. over \mathbf{Q}
10. Let R be a commutative ring with 1 , and let M be a principal maximal ideal.
11. Show that there is no ideal I such that $M^{2} \subsetneq I \subsetneq M$.
12. Give an example of a ring R and a maximal ideal M to show this statement is false if M is not assumed principal.
13. Suppose that B is a commutative ring, and that

$$
f=\sum_{i=0}^{n} b_{i} x^{i} \in B[x]
$$

is a polynomial with coefficients in B. Prove that f is nilpotent if and only if all $b_{i} \in B$ are nilpotent.

Algebra Comp January 13, 2017

Algebra Comp January 13, 2017

