Algebra Comprehensive Exam Spring 2018

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

1. Let H be the subgroup of S_6 generated by (16425) and (16)(25)(34). Let H act on S_6 by conjugation. Show that the set

 $\Sigma = \{ (12)(35)(46), (13)(24)(56), (14)(25)(36), (15)(26)(34), (16)(23)(45) \}$

is invariant under H, thereby defining a homomorphism $\phi: H \to S_5$. Show that ϕ is an isomorphism.

- 2. Show that every finite group is isomorphic to a subgroup of a simple group.
- 3. Let R be a commutative ring with 1. Suppose an ideal I in R is such that $xy \in I$ implies that either $x \in I$ or $y^n \in I$. Let

$$\sqrt{I} = \{r \in R : r^n \text{ for some } n \in \mathbb{Z}_> 0\}$$

Show that \sqrt{I} is the smallest prime ideal containing I. (Here "smallest" means that any other prime ideal containing I, contains \sqrt{I} . Hint: remember to prove that \sqrt{I} is an ideal, which is prime.)

- 4. Suppose that R is a commutative ring with 1 such that for every $x \in R$, there is some natural number n > 1 such that $x^n = x$. Show that every prime ideal of R is maximal.
- 5. Compute the Galois group of $x^4 x^2 6$ over \mathbb{Q} .
- 6. Suppose V is a finite dimensional vector space over a field k and suppose that $A: V \to V$ is a k-linear endomorphism whose minimal polynomial is *not* equal to its characteristic polynomial. Show that there exist k-linear endomorphisms $B, C: V \to V$ such that AB = BA, AC = CA, but $BC \neq CB$
- 7. Suppose that K is an extension of \mathbb{Q} of degree n. Let $\sigma_1, \ldots, \sigma_n : K \hookrightarrow \mathbb{C}$ be the distinct embeddings of K into \mathbb{C} . Let $\alpha \in K$. Regarding K as a vector space over \mathbb{Q} , let $\phi : K \to K$ be the linear transformation $\phi(x) = \alpha x$. Show that the eigenvalues of ϕ are $\sigma_1(\alpha), \ldots, \sigma_n(\alpha)$.
- 8. An *R*-module *M* is called *irreducible* if $M \neq 0$ and the only submodules of *M* are 0 and *M*. Now suppose that *R* is a commutative ring with 1 and that *M* is a left *R*-module. Show that *M* is irreducible if and only if *M* is isomorphic to R/I for a maximal ideal *I* of *R*.