Analysis Comprehensive Exam January 11, 2017

Student Number:

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

Notes.

i. Unless otherwise specified, functions are (extended) real-valued.

ii. The exterior Lebesgue measure of a set $E \subseteq \mathbf{R}^d$ is denoted by $|E|_e$. If E is Lebesgue measurable, then its Lebesgue measure is denoted by |E|.

iii. The characteristic function of a set A is denoted by $\mathbf{1}_A$.

1. Assume f is real-valued and has bounded variation on [a, b], and extend f to **R** by setting f(x) = f(a) for x < a and f(x) = f(b) for x > b. Prove that there exists a constant C > 0 such that

$$||T_t f - f||_1 \le C|t|, \qquad t \in \mathbf{R},$$

where $T_t f(x) = f(x - t)$ denotes the translation of f by t.

2. Functions in this problem are complex-valued.

Let $W(x) = \max\{1 - |x|, 0\}$ be the "hat function" on [-1, 1]. Given $f \in L^1(\mathbf{R})$, let

$$g(y) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i y t} dt$$

Prove that g is bounded on \mathbf{R} , and for a.e. x we have

$$\int_{-\infty}^{\infty} f(y) \left(\frac{\sin \pi (x-y)}{\pi (x-y)}\right)^2 dy = \int_{-1}^{1} g(t) \left(1-|t|\right) e^{2\pi i t x} dt$$

Hint: $\int_{-\infty}^{\infty} W(t) e^{2\pi i y t} dt = \left(\frac{\sin \pi y}{\pi y}\right)^2$ by direct calculation (which you may assume without proof).

3. Let c_0 be the space of all real-valued sequences that vanish at infinity:

$$c_0 = \left\{ x = (x_k)_{k \in \mathbf{N}} : \lim_{k \to \infty} x_k = 0 \right\}.$$

The norm on c_0 is the sup-norm,

$$\|x\|_{\infty} = \sup_{k \in \mathbf{N}} |x_k|.$$

Prove directly that the dual space of c_0 is isometrically isomorphic to ℓ^1 .

4. Let A be a measurable subset of [0, 1].

(a) Prove that if $|A| > \frac{2}{3}$, then A contains an arithmetic progression of length 3, that is, prove that there are $a, d \in \mathbf{R}$ such that $a, a + d, a + 2d \in A$.

(b) Use part (a) to prove that if |A| > 0, then A contains an arithmetic progression of length 3.

5. Let
$$h(x) = \frac{1}{\sqrt{|\sin 2\pi x|}}$$
, and consider the function $H(x) = \sum_{k=1}^{\infty} \frac{h(kx)}{k^2}$.

- (a) Prove that $H = \infty$ on a dense subset of **R**.
- (b) Prove that H converges to a finite number a.e. on **R**.

January 11, 2017

6. Given $A \subseteq [0, 1]$, prove that A is Lebesgue measurable if and only if

$$|A|_e + |[0,1] \setminus A|_e = 1$$

- 7. Let $f_n : [0,1] \mapsto \mathbf{R}$ be nonnegative measurable functions that converge almost everywhere to a measurable function $f \in L^1[0,1]$.
 - (a) Prove that the integrals $\int_0^1 \min\{f_n(x), f(x)\} dx$ are defined for each n, and $\lim_{n \to \infty} \int_0^1 \min\{f_n(x), f(x)\} dx = \int_0^1 f(x) dx.$
 - (b) Assume that

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx.$$

Use part (a) to prove that f_n converges to f in L^1 -norm on [0, 1].

8. Let X be a set and let \mathfrak{M} be a sigma algebra of subsets of X. Suppose that (X, \mathfrak{M}, μ) and (X, \mathfrak{M}, ν) are two finite measure spaces, with μ a positive measure and ν a signed measure. Prove that the following statements are equivalent.

(a) ν is absolutely continuous with respect to μ ($\nu \ll \mu$), i.e. if $E \in \mathfrak{M}$ satisfies $\mu(E) = 0$ then $\nu(E) = 0$.

(b) For every $\varepsilon > 0$ there exists some $\delta > 0$ such that if $E \in \mathfrak{M}$ satisfies $\mu(E) < \delta$ then $\nu(E) < \varepsilon$.