Analysis Comprehensive Exam
January 11, 2017

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.

Notes.
i. Unless otherwise specified, functions are (extended) real-valued.

ii. The exterior Lebesgue measure of a set £ C R? is denoted by |E|.. If E is Lebesgue
measurable, then its Lebesgue measure is denoted by |E].

iii. The characteristic function of a set A is denoted by 1 4.
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1. Assume f is real-valued and has bounded variation on [a, b], and extend f to R by setting
f(z) = f(a) for x < a and f(z) = f(b) for x > b. Prove that there exists a constant
C > 0 such that

ITif — fllh<CJtl,  teR,

where T;f(z) = f(z — t) denotes the translation of f by t.

2. Functions in this problem are complex-valued.
Let W(z) = max{1 — |z|,0} be the “hat function” on [—1,1]. Given f € L'(R), let

s = [ ") .

Prove that ¢ is bounded on R, and for a.e. x we have

/OO f(y) (Mf dy = /1 g(t) (1 _ |t|) p2mite gy

—co m(z —y) 1

) . 2
Hint: [77 W (t) e*™ ¥ dt = <Slfr%> by direct calculation (which you may assume without
proof).

3. Let ¢y be the space of all real-valued sequences that vanish at infinity:
co = {x = ()gen : lim zp = 0}.
k—oo
The norm on ¢y is the sup-norm,

[ ]loe = sup x|
keN

Prove directly that the dual space of ¢ is isometrically isomorphic to £!.

4. Let A be a measurable subset of [0, 1].

(a) Prove that if |A] > 2, then A contains an arithmetic progression of length 3, that is,
prove that there are a,d € R such that a,a + d,a + 2d € A.

(b) Use part (a) to prove that if [A| > 0, then A contains an arithmetic progression of
length 3.

5. Let h(z) = 3 h(:f).

1

o0
, and consider the function H (z)
k=

1
\/| sin 27|

(a) Prove that H = oo on a dense subset of R.

(b) Prove that H converges to a finite number a.e. on R.
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6. Given A C [0,1], prove that A is Lebesgue measurable if and only if

[ Ale + 1[0, 1]\ Ale = 1.

7. Let f, : [0,1] — R be nonnegative measurable functions that converge almost everywhere
to a measurable function f € L0, 1].

1
(a) Prove that the integrals / min{ f,(z), f(z)} dz are defined for each n, and
0

1

lim min{ f,,(z), f(z)} dz = /0 f(z)dx.

n—oo 0

(b) Assume that
lim i fo(z)de = /0 f(z)dx.

n—oo

Use part (a) to prove that f,, converges to f in L'-norm on [0, 1].

8. Let X be a set and let 9t be a sigma algebra of subsets of X. Suppose that (X, 90, u)
and (X, 90, v) are two finite measure spaces, with p a positive measure and v a signed
measure. Prove that the following statements are equivalent.

(a) v is absolutely continuous with respect to u (v < p), i.e. if E' € 9 satisfies u(E) =0
then v(E) = 0.

(b) For every £ > 0 there exists some ¢ > 0 such that if E € 9 satisfies u(E) <  then
v(E) <e.
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