Analysis Comprehensive Exam
 January 11, 2017

Student Number:
 \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

Notes.

i. Unless otherwise specified, functions are (extended) real-valued.
ii. The exterior Lebesgue measure of a set $E \subseteq \mathbf{R}^{d}$ is denoted by $|E|_{e}$. If E is Lebesgue measurable, then its Lebesgue measure is denoted by $|E|$.
iii. The characteristic function of a set A is denoted by $\mathbf{1}_{A}$.

1. Assume f is real-valued and has bounded variation on $[a, b]$, and extend f to \mathbf{R} by setting $f(x)=f(a)$ for $x<a$ and $f(x)=f(b)$ for $x>b$. Prove that there exists a constant $C>0$ such that

$$
\left\|T_{t} f-f\right\|_{1} \leq C|t|, \quad t \in \mathbf{R}
$$

where $T_{t} f(x)=f(x-t)$ denotes the translation of f by t.
2. Functions in this problem are complex-valued.

Let $W(x)=\max \{1-|x|, 0\}$ be the "hat function" on $[-1,1]$. Given $f \in L^{1}(\mathbf{R})$, let

$$
g(y)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i y t} d t
$$

Prove that g is bounded on \mathbf{R}, and for a.e. x we have

$$
\int_{-\infty}^{\infty} f(y)\left(\frac{\sin \pi(x-y)}{\pi(x-y)}\right)^{2} d y=\int_{-1}^{1} g(t)(1-|t|) e^{2 \pi i t x} d t
$$

Hint: $\int_{-\infty}^{\infty} W(t) e^{2 \pi i y t} d t=\left(\frac{\sin \pi y}{\pi y}\right)^{2}$ by direct calculation (which you may assume without proof).
3. Let c_{0} be the space of all real-valued sequences that vanish at infinity:

$$
c_{0}=\left\{x=\left(x_{k}\right)_{k \in \mathbf{N}}: \lim _{k \rightarrow \infty} x_{k}=0\right\} .
$$

The norm on c_{0} is the sup-norm,

$$
\|x\|_{\infty}=\sup _{k \in \mathbf{N}}\left|x_{k}\right| .
$$

Prove directly that the dual space of c_{0} is isometrically isomorphic to ℓ^{1}.
4. Let A be a measurable subset of $[0,1]$.
(a) Prove that if $|A|>\frac{2}{3}$, then A contains an arithmetic progression of length 3 , that is, prove that there are $a, d \in \mathbf{R}$ such that $a, a+d, a+2 d \in A$.
(b) Use part (a) to prove that if $|A|>0$, then A contains an arithmetic progression of length 3.
5. Let $h(x)=\frac{1}{\sqrt{|\sin 2 \pi x|}}$, and consider the function $H(x)=\sum_{k=1}^{\infty} \frac{h(k x)}{k^{2}}$.
(a) Prove that $H=\infty$ on a dense subset of \mathbf{R}.
(b) Prove that H converges to a finite number a.e. on \mathbf{R}.
6. Given $A \subseteq[0,1]$, prove that A is Lebesgue measurable if and only if

$$
|A|_{e}+|[0,1] \backslash A|_{e}=1
$$

7. Let $f_{n}:[0,1] \mapsto \mathbf{R}$ be nonnegative measurable functions that converge almost everywhere to a measurable function $f \in L^{1}[0,1]$.
(a) Prove that the integrals $\int_{0}^{1} \min \left\{f_{n}(x), f(x)\right\} d x$ are defined for each n, and

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \min \left\{f_{n}(x), f(x)\right\} d x=\int_{0}^{1} f(x) d x
$$

(b) Assume that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x
$$

Use part (a) to prove that f_{n} converges to f in L^{1}-norm on $[0,1]$.
8. Let X be a set and let \mathfrak{M} be a sigma algebra of subsets of X. Suppose that (X, \mathfrak{M}, μ) and (X, \mathfrak{M}, ν) are two finite measure spaces, with μ a positive measure and ν a signed measure. Prove that the following statements are equivalent.
(a) ν is absolutely continuous with respect to $\mu(\nu \ll \mu)$, i.e. if $E \in \mathfrak{M}$ satisfies $\mu(E)=0$ then $\nu(E)=0$.
(b) For every $\varepsilon>0$ there exists some $\delta>0$ such that if $E \in \mathfrak{M}$ satisfies $\mu(E)<\delta$ then $\nu(E)<\varepsilon$.

Analysis Comp
January 11, 2017

