Analysis Comprehensive Exam Spring 2018

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let $A \subseteq \mathbb{R}$ be a measurable set. For $x \in \mathbb{R}$ denote $A+x=\{a+x: a \in A\}$. Prove that if A satisfies

$$
|A \backslash(A+x)|=0 \quad \forall x \in \mathbb{R},
$$

then either $|A|=0$ or $|\mathbb{R} \backslash A|=0$. (Note that here $A \backslash B=\{x \in A: x \notin B\}$).
2. Let $E \subset \mathbb{R}^{n}$ be measurable with $|E|<\infty$, and let $f: E \rightarrow \mathbb{R}, f_{k}: E \rightarrow \mathbb{R}$ be measurable, $k \geq 1$. Assume that every subsequence of $\left\{f_{k}\right\}$ contains another subsequence that converges to f a.e. on E.
(i) Prove that $\left\{f_{k}\right\}$ converges in measure to f on E.
(ii) Prove the following extension of Lebesgue's Dominated Convergence Theorem: assume that there is an integrable function $\phi: E \rightarrow \mathbb{R}$ such that for $k \geq 1$,

$$
\left|f_{k}(x)\right| \leq \phi(x) \quad \text { for a.e. } x \in I .
$$

Prove that f is integrable and

$$
\lim _{k \rightarrow \infty} \int_{E} f_{k}(x) d x=\int_{E} f(x) d x
$$

3. Let $g(x)=x^{2}+1+\sin (2018 x)$.
i. Prove that the function $\phi:[0, \infty) \rightarrow[0, \infty)$ defined by $\phi(s)=|\{x: g(x)<s\}|$ is continuous.
ii. Let

$$
\mathfrak{F}:=\left\{f \in L^{1}(\mathbb{R}): f: \mathbb{R} \rightarrow[0,1] \text { and } \int_{\mathbb{R}} f=1\right\}
$$

Prove that $\inf _{f \in \mathfrak{F}} \int_{\mathbb{R}} f g$ is obtained for a function f of the form $f=\mathbb{1}_{\{g<s\}}$ for some constant $s \in \mathbb{R}$.
4. Let $f:[0,1] \rightarrow[0,1]$ be defined by $f(0)=0$ and

$$
f(x)=x^{2}\left|\sin \frac{1}{x}\right|, \quad x \in(0,1] .
$$

Show that f is absolutely continuous on $[0,1]$. Give an example of a function $\phi:[0,1] \rightarrow$ $[0,1]$ that is of bounded variation, and such that ϕ^{\prime} exists in $(0,1]$ but such that $\phi \circ f$ is not absolutely continuous in $[0,1]$.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function with continuous partial derivatives. Denote $U=[0,1]^{2} \subset$ \mathbb{R}^{2}. Assume that $\partial f / \partial x$ and $\partial f / \partial y$ are Lipschitz functions which vanish on the boundary of U (that is, they are equal zero on the boundary).
i. Denote $h=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$. Prove that h is defined almost everywhere on U and that for every $(x, y) \in U$ we have

$$
f(x, y)=f(x, 0)+\int_{[0, x] \times[0, y]} h .
$$

ii. Prove that for almost every $(x, y) \in U$ we have

$$
\frac{\partial f}{\partial x}(x, y)=\int_{[0, y]} h(x, s) d s
$$

iii. Prove that the functions $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$ and $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$ are equal almost everywhere on U.
6. i. Let $E_{k} \subset \mathbb{R}^{n}, k \in \mathbb{N}$, be sets which satisfy $E_{1} \subseteq E_{2} \subseteq E_{3} \subseteq \ldots$, and denote $E=\cup_{k} E_{k}$. Assume that $|E|_{e}$ is finite. Prove that

$$
|E|_{e}=\lim _{k \rightarrow \infty}\left|E_{k}\right|_{e}
$$

Here the subscript e denotes the exterior Lebesgue measure.
ii. Let E be a set in \mathbb{R}^{n} with $|E|_{e}$ finite and positive. Let $0<\theta<1$. Show that there is a set $E_{\theta} \subset E$ with

$$
\left|E_{\theta}\right|_{e}=\theta|E|_{e}
$$

7. Suppose that μ, ν are probability measures on $[0,1]$, and

$$
\int_{[0,1]} t^{j} d \mu(t)=\int_{[0,1]} t^{j} d \nu(t)
$$

for all $j \geq 0$. Assume also that $\mu(\{0\})=\nu(\{0\})$. Prove that for every $d \in[0,1]$,

$$
\mu([0, d])=\nu([0, d]) .
$$

(Hint: you may assume Weierstrass' approximation theorem).
8. Let B be an infinite dimensional Banach space and let J be an index set. Assume that $\left\{x_{j}\right\}_{j \in J} \subseteq B$ is a Hamel basis for B, that is:
i. Every $y \in B$ can be written as a finite linear combination of vectors in $\left\{x_{j}\right\}$:

$$
y=\sum_{j=1}^{N} \alpha_{j} x_{j} .
$$

ii. The elements in B are linearly independent: If $\sum_{j=1}^{N} \alpha_{j} x_{j}=0$ then $\alpha_{j}=0$ for every j.

Prove that the set J is uncountable.

