Analysis Comprehensive Exam Spring 2018

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

1. Let $A \subseteq \mathbb{R}$ be a measurable set. For $x \in \mathbb{R}$ denote $A + x = \{a + x : a \in A\}$. Prove that if A satisfies

$$|A \setminus (A+x)| = 0 \qquad \forall x \in \mathbb{R},$$

then either |A| = 0 or $|\mathbb{R} \setminus A| = 0$. (Note that here $A \setminus B = \{x \in A : x \notin B\}$).

- 2. Let $E \subset \mathbb{R}^n$ be measurable with $|E| < \infty$, and let $f : E \to \mathbb{R}$, $f_k : E \to \mathbb{R}$ be measurable, $k \ge 1$. Assume that every subsequence of $\{f_k\}$ contains another subsequence that converges to f a.e. on E.
 - (i) Prove that $\{f_k\}$ converges in measure to f on E.
 - (ii) Prove the following extension of Lebesgue's Dominated Convergence Theorem: assume that there is an integrable function $\phi: E \to \mathbb{R}$ such that for $k \ge 1$,

$$|f_k(x)| \le \phi(x)$$
 for a.e. $x \in I$.

Prove that f is integrable and

$$\lim_{k \to \infty} \int_{E} f_k(x) \, dx = \int_{E} f(x) \, dx.$$

- 3. Let $g(x) = x^2 + 1 + \sin(2018x)$.
 - i. Prove that the function $\phi : [0, \infty) \to [0, \infty)$ defined by $\phi(s) = |\{x : g(x) < s\}|$ is continuous.
 - ii. Let

$$\mathfrak{F} := \{ f \in L^1(\mathbb{R}) : f : \mathbb{R} \to [0,1] \text{ and } \int_{\mathbb{R}} f = 1 \}.$$

Prove that $\inf_{f \in \mathfrak{F}} \int_{\mathbb{R}} fg$ is obtained for a function f of the form $f = \mathbb{1}_{\{g < s\}}$ for some constant $s \in \mathbb{R}$.

4. Let $f : [0, 1] \to [0, 1]$ be defined by f(0) = 0 and

$$f(x) = x^2 \left| \sin \frac{1}{x} \right|, \qquad x \in (0, 1].$$

Show that f is absolutely continuous on [0, 1]. Give an example of a function $\phi : [0, 1] \rightarrow [0, 1]$ that is of bounded variation, and such that ϕ' exists in (0, 1] but such that $\phi \circ f$ is not absolutely continuous in [0, 1].

5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function with continuous partial derivatives. Denote $U = [0, 1]^2 \subset \mathbb{R}^2$. Assume that $\partial f / \partial x$ and $\partial f / \partial y$ are Lipschitz functions which vanish on the boundary of U (that is, they are equal zero on the boundary).

i. Denote $h = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$. Prove that h is defined almost everywhere on U and that for every $(x, y) \in U$ we have

$$f(x,y) = f(x,0) + \int_{[0,x] \times [0,y]} h.$$

ii. Prove that for almost every $(x, y) \in U$ we have

$$\frac{\partial f}{\partial x}(x,y) = \int_{[0,y]} h(x,s)ds.$$

iii. Prove that the functions $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$ and $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$ are equal almost everywhere on U.

6. i. Let $E_k \subset \mathbb{R}^n$, $k \in \mathbb{N}$, be sets which satisfy $E_1 \subseteq E_2 \subseteq E_3 \subseteq ...$, and denote $E = \bigcup_k E_k$. Assume that $|E|_e$ is finite. Prove that

$$|E|_e = \lim_{k \to \infty} |E_k|_e.$$

Here the subscript e denotes the exterior Lebesgue measure.

ii. Let E be a set in \mathbb{R}^n with $|E|_e$ finite and positive. Let $0 < \theta < 1$. Show that there is a set $E_\theta \subset E$ with

$$\left|E_{\theta}\right|_{e} = \theta \left|E\right|_{e}.$$

7. Suppose that μ, ν are probability measures on [0, 1], and

$$\int_{[0,1]} t^{j} d\mu (t) = \int_{[0,1]} t^{j} d\nu (t)$$

for all $j \ge 0$. Assume also that $\mu(\{0\}) = \nu(\{0\})$. Prove that for every $d \in [0, 1]$,

$$\mu([0,d]) = \nu([0,d]).$$

(Hint: you may assume Weierstrass' approximation theorem).

- 8. Let B be an infinite dimensional Banach space and let J be an index set. Assume that $\{x_j\}_{j\in J} \subseteq B$ is a Hamel basis for B, that is:
 - i. Every $y \in B$ can be written as a **finite** linear combination of vectors in $\{x_i\}$:

$$y = \sum_{j=1}^{N} \alpha_j x_j.$$

ii. The elements in B are linearly independent: If $\sum_{j=1}^{N} \alpha_j x_j = 0$ then $\alpha_j = 0$ for every j.

Prove that the set J is uncountable.