Differential Equations Comprehensive Exam January 18, 2017

Student	Number:	

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

1. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Let $u \in C^{2,1}(\Omega \times [0,T]) \cap C(\overline{\Omega} \times [0,T])$ be a solution to the equation

$$\begin{cases} u_t - \Delta u + x \cdot \nabla_x u = 0 & \text{in } \Omega \times (0, T), \\ u(x, t) = g(x, t) & \text{on } \partial \Omega \times [0, T] \cup \Omega \times \{t = 0\}, \end{cases}$$

where $0 \le g \le 1$. Show that $u \le 1$ in $\Omega \times [0, T]$.

2. Suppose that $f \in C^1(\mathbb{R})$ is a bounded and strictly increasing function such that

$$\sup_{x \in \mathbb{R}} f'(x) = K > 1 \quad \text{with } K < \infty.$$

Consider the initial value problem

$$\begin{cases} u_t - uu_x + u = 0 & \text{in } \mathbb{R} \times (0, T), \\ u(x, 0) = f(x) & \text{for } x \in \mathbb{R}. \end{cases}$$

Find the smallest T (in terms of K) such that no classical C^1 solution exists for t > T, and write down the solution u(x, t) (in implicit form) for $t \in [0, T)$.

3. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary. Suppose $g \in C^{\infty}(\overline{\Omega})$ satisfies $g \geq 1$ in $\overline{\Omega}$. Given $f_1, f_2 \in C_c^{\infty}(\Omega)$, show that there can be at most one solution $u \in C^2(\overline{\Omega} \times [0, \infty))$ to the equation

$$\begin{cases} u_{tt} - g(x)\Delta u = 0 & \text{for } x \in \Omega, t > 0, \\ u(x,t) = 0 & \text{for } x \in \partial\Omega, t > 0, \\ u(x,0) = f_1(x), \ u_t(x,0) = f_2(x) & \text{for } x \in \partial\Omega. \end{cases}$$

- 4. Let Ω be the punctured closed unit disk in \mathbb{R}^2 , i.e. $\Omega = \{x \in \mathbb{R}^2 : 0 < |x| \le 1\}$. Suppose that $u \in C^2(\Omega)$ is harmonic in the interior of Ω . Prove that if u is bounded in Ω , then $\sup_{\Omega} u \le \max_{\{|y|=1\}} u(y)$. Also give a counterexample to show that the conclusion can be false without the assumption that u is bounded.
- 5. Consider the differential equation

$$\frac{d}{dt}y(t) = f(t,y)$$

Assume that $f \in C(\mathbb{R} \times \mathbb{R})$, and there exists some constant K > 0, such that

$$f(t, y+h) - f(t, y) \le Kh$$
 for all $t \in \mathbb{R}, y \in \mathbb{R}, h > 0$.

(Note that f is NOT necessarily Lipschitz in y as the above inequality requires h > 0.) If y_1, y_2 are two C^1 solutions to the equation in [0, T] with $y_1(0) = y_2(0)$, prove that $y_1 \equiv y_2$ on [0, T].

January 18, 2017

6. Consider the differential equation

$$\dot{x} = f(x)$$

where $x \in \mathbb{R}^2$ and $f : \mathbb{R}^2 \to \mathbb{R}^2$ is C^1 . Let γ be a periodic orbit. If $\omega(x)$ is the ω -limit set of x, show that $\Omega(\gamma) = \{x \notin \gamma | \omega(x) = \gamma\}$ is open. Is it true that $\widehat{\Omega}(\gamma) = \{x | \omega(x) = \gamma\}$ is open?

7. Consider the equation

$$\dot{x} = f(x) + \epsilon h(t, x) \tag{1}$$

where $x \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^n$ and $h : \mathbb{R}^{n+1} \to \mathbb{R}^n$ are C^2 functions, and h(t, x) is *T*-periodic in *t*. Finally ϵ is a parameter. Assume that there exists x^* such that $f(x^*) = 0$ and

$$A = \frac{\partial f(x)}{\partial x}\Big|_{x=x^*}$$

is an invertible matrix. Prove that, for ϵ small enough, there exists a periodic solution $x(t,\epsilon)$ of (1) with $x(t,0) \equiv x^*$ and

$$x(t,\epsilon) - x^* = O(\epsilon).$$

Compute

$$\delta x(t) = \frac{\partial x(t,\epsilon)}{\partial \epsilon} \Big|_{\epsilon=0}.$$

8. Consider the linear differential equation

$$\begin{cases} \dot{x}_1 = \alpha(t)x_1 + \beta(t)x_2\\ \dot{x}_2 = \gamma(t)x_1 + \delta(t)x_2 \end{cases}$$

where α , β , γ , and δ are continuous functions and

$$\liminf_{t\to\infty}\int_0^t (\alpha(s)+\delta(s))ds > -\infty$$

Suppose that there exists a solution $\bar{x}(t) = (\bar{x}_1(t), \bar{x}_2(t))$ such that $\bar{x}(0) \neq (0,0)$ and $\lim_{t\to\infty} |\bar{x}(t)| = 0$. Show that for any solution x(t) such that $x(0) \neq \lambda \bar{x}(0)$, for any $\lambda \in \mathbb{R}$, we have $\lim_{t\to\infty} |x(t)| = \infty$.