Discrete Mathematics Comprehensive Exam Spring 2018

Student Number:

Instructions: Complete 5 of the 7 problems, and circle their numbers below - the uncircled problems will not be graded.
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Prove that if G is a graph with $m \geq 1$ edges then G has a bipartite subgraph with more than $m / 2$ edges.
2. Show that if $\chi(G) \geq 4$ then G contains a subdivision of K_{4}.
3. Let G be a 3 -connected graph. Show that G contains an induced non-separating cycle. (A cycle in a connected graph is non-separating if its deletion results in a connected graph.)
4. Let $r \geq 1$ be an integer and G an r-regular graph. Show that G is bipartite if and only if $E(G)$ can be decomposed into (edge-disjoint) copies of $K_{1, r}$.
5. Let M and N be finite sets of size $|M|=m$ and $|N|=n$. Trivially, there exists an injection from M to N if $n \geq m$. The goal of this exercise is to prove a slightly weaker statement, demonstrating the strength of the Lovász Local Lemma (LLL) compared to the union bound/first moment method.
(a) Using a union bound argument/first moment method argument, show that an injective mapping $f: M \rightarrow N$ exists if $n>\binom{m}{2}$.
(b) Using the LLL, show that an injective mapping $f: M \rightarrow N$ exists if $n>6 m$.
6. By $G(n, p)$ we denote the binomial random graph with vertex set $[n]$, where each of the $\binom{n}{2}$ edges of the complete graph K_{n} is included, independently, with probability p.
(a) Show that that if $p \gg(\log n)^{1 / 2} n^{-1 / 2}$, then whp every edge of $G(n, p)$ is contained in at least one triangle.
(b) Show that if $p \gg(\log n)^{1 / 3} n^{-2 / 3}$, then whp every vertex of $G(n, p)$ is contained in at least one triangle.
7. By $G(n, p)$ we denote the binomial random graph with vertex set $[n]$. Let $\omega=\omega(n) \rightarrow \infty$ as $n \rightarrow \infty$. For any $p=p(n) \in[0,1]$ show that

$$
\mathbb{P}(G(n, p) \text { is connected }) \rightarrow \begin{cases}o(1) & \text { if } p \leq(\log n-\omega) / n \\ 1-o(1) & \text { if } p \geq(\log n+\omega) / n\end{cases}
$$

(It's not needed, but it's OK to assume that $\omega=\omega(n) \rightarrow \infty$ as $n \rightarrow \infty$ arbitrarily slowly, say, $\omega=o(\log \log \log n)$ holds, if this helps your calculations.)

Discrete Mathematics Comp
Spring 2018

