Numerical Analysis Comprehensive Exam Spring 2018

Student Number:
 \square

Instructions: Complete 5 of the 7 problems, and circle their numbers below - the uncircled problems will not be graded.
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Find a Gauss quadrature formula that approximates $\int_{0}^{h} f(x) d x \approx c_{1} f(0)+c_{2} f\left(c_{3}\right)$, where c_{1}, c_{2} and $c_{3} \in(0, h]$ are to be determined. Estimate the order of accuracy (in terms of $\left.O\left(h^{r}\right)\right)$ of this approximation.
2. Let $\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \cdots, \mathbf{A}_{6}\right\}$ be the vertices and edge midpoints of a triangle in counterclockwise direction, beginning with a vertex. Let P^{2} be the linear space of polynomials of degree up to two. One can define a set of Lagrangian basis functions of P^{2} associated with these points. Find the Lagrangian basis functions of P^{2} associated with \mathbf{A}_{1} and \mathbf{A}_{2}.
3. Consider an initial value problem $x^{\prime}=f(x)$ with initial condition $x(0)=x_{0}$, where f is smooth enough function. What is the order of accuracy for the following scheme:

$$
x_{k+1}=x_{k}+\frac{h}{2}\left(3 f_{k}-f_{k-1}\right) ?
$$

Find the interval for h that the scheme is absolutely stable. If the scheme is not stable, explain why.
4. Consider the scheme

$$
\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}=\theta \frac{U_{i+1}^{n+1}-2 U_{i}^{n+1}+U_{i-1}^{n+1}}{\Delta x^{2}}+(1-\theta) \frac{U_{i+1}^{n}-2 U_{i}^{n}+U_{i-1}^{n}}{\Delta x^{2}},
$$

$0 \leq \theta \leq 1$. Analyze its stability for various θ.
5. Consider the Poisson equation $-\triangle u=f$ defined on a polygonal domain Ω with Dirichlet boundary condition $\left.u\right|_{\partial \Omega}=g$. Let Ω be partitioned with a triangular mesh (without "hanging nodes"). Describe a piecewise linear continuous finite element method for solving this problem on the mesh and prove the existence and uniqueness of the numerical solution of the method.
6. Consider a symmetric matrix A given by

$$
A=\left[\begin{array}{ccccccc}
1 & 0.1 & 0 & 0 & 0 & \cdots & 0 \\
0.1 & 2 & 0.1 & 0 & 0 & \cdots & 0 \\
0 & 0.1 & 3 & 0.1 & 0 & \cdots & 0 \\
0 & 0 & 0.1 & 4 & 0.1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & 0 & 0.1 & 100
\end{array}\right]
$$

Let $\vec{x}_{0}=\frac{1}{10}[1, \cdots, 1]^{T} \in \mathbb{R}^{100}$ and $\mu=50.25$. One computes \vec{x}_{n} and λ_{n} by the following procedure,

$$
\begin{aligned}
& \text { for } \quad n=1,2, \cdots ; \\
& \quad \vec{w}=(A-\mu I)^{-1} \vec{x}_{n-1} ; \\
& \vec{x}_{n}=\vec{w} /\|\vec{w}\|_{2} ; \\
& \lambda_{n}=\vec{x}_{n}^{T} A \vec{x}_{n} ; \\
& \text { end } ;
\end{aligned}
$$

Are \vec{x}_{n} and λ_{n} convergent? If so, what are they converge to and what are the rate of convergence? If not, explain why.
7. Consider to solve a linear system of equation $A \vec{x}=\vec{b}$ by iterative methods, where A is a $m \times m$ real symmetric positive definite matrix, denote its solution as \vec{x}^{*}. Design a numerical algorithm that finds $\vec{x}_{n} \in \vec{x}_{n-1}+\operatorname{span}\{\vec{r}\}$, where $\vec{r}=\vec{b}-A \vec{x}_{n-1}$, such that the new residual at \vec{x}_{n} is orthogonal to \vec{r}. Prove that \vec{x}_{n} is the minimizer of

$$
\min _{\vec{x} \in \vec{x}_{n-1}+\operatorname{span}\{\vec{r}\}}\left[\left(\vec{x}^{*}-\vec{x}\right)^{T} A\left(\vec{x}^{*}-\vec{x}\right)\right]^{\frac{1}{2}}
$$

