# Probability Comprehensive Exam January 15, 2016 

## Student Number: <br> $\square$

Instructions: Complete up to 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let $X$ have $\mathbb{E} X=0$ and $\operatorname{Var} X=\sigma^{2}>0$. Show that if $c>0$, then

$$
\mathbb{P}(X>c) \leq \frac{\sigma^{2}}{\sigma^{2}+c^{2}}
$$

Hint: write $c-X=(c-X)_{+}-(c-X)_{-}$and use Cauchy-Schwarz type arguments.
2. Let $X=\left(X_{1}, X_{2}\right)$ be a Gaussian vector with zero mean and covariance matrix

$$
\Sigma=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

where $|\rho|<1$. Find a matrix $A$ such that $X=A Z$, where $Z$ is a standard normal vector and derive the characteristic function of $X$ as a function of $\rho$.
3. Let $X_{1}, X_{2}, \ldots$ be i.i.d. uniform $(0,1)$ random variables. Show that

$$
\left(X_{1} \cdots X_{n}\right)^{1 / n}
$$

converges almost surely as $n \rightarrow \infty$ and compute the limit.
4. Let $X_{1}, X_{2}, \ldots$ be i.i.d. exponential variables with parameter 1 and set

$$
M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}
$$

Find sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ of real numbers such that $\left(M_{n}-a_{n}\right) / b_{n}$ converges in distribution.
5. Let $\left(N_{t}\right)_{t \geq 0}$ be a rate- $\lambda$ Poisson process. Let $X_{1}, X_{2}, \ldots$ be i.i.d. random variables with $\mathbb{E}\left|X_{1}\right|<\infty$ (independent of the Poisson process as well) and define

$$
S_{t}=\sum_{i=1}^{N_{t}} X_{i}
$$

Show that $S_{t} / t$ converges in probability to a constant and compute this constant.
6. Let $X_{1}, X_{2}, \ldots$ be i.i.d. standard normal random variables and for $x \in(-1,1)$, set

$$
Y=\sum_{n=1}^{\infty} x^{n} X_{n}
$$

Show that the sum defining $Y$ converges and find its distribution.
7. Let $X_{1}, X_{2}, \ldots$ be independent random variables such that $X_{n}$ has $\operatorname{Binomial}\left(n, p_{n}\right)$ distribution, for some $p_{n}>0$. Show that if $n p_{n}\left(1-p_{n}\right) \rightarrow \infty$, then

$$
\frac{X_{n}-n p_{n}}{\sqrt{n p_{n}\left(1-p_{n}\right)}} \Rightarrow N(0,1)
$$

8. A sequence of events $A_{1}, A_{2}, \ldots$ is said to be 1-dependent if for every $k \geq 1$, the sigmaalgebras $\sigma\left(A_{1}, \ldots, A_{k}\right)$ and $\sigma\left(A_{k+2}, A_{k+3}, \ldots\right)$ are independent. Prove that if $A_{1}, A_{2}, \ldots$ are 1-dependent and $E$ is a tail event:

$$
E \in \cap_{n} \sigma\left(A_{n}, A_{n+1}, \ldots\right)
$$

then $\mathbb{P}(E)=0$ or 1.

