Probability Comprehensive Exam January 18, 2017

Student	Number:	

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Show that if X_n and Y_n are independent for n = 1, 2, ... and $X_n \to^w X, Y_n \to^w Y$, where X and Y are independent, then $X_n + Y_n \to^w X + Y$.
- 2. Let X be a random variable with mean zero and finite variance σ^2 . Prove that for every c > 0,

$$P(X > c) \le \frac{\sigma^2}{\sigma^2 + c^2}$$

Hint: Combine the inequality $\mathbb{E}(c-X) \leq \mathbb{E}((c-X)\mathbf{1}_{\{X < c\}})$ with the Cauchy-Schwartz inequality.

3. Let X_1, X_2, \dots be i.i.d. random variables uniformly distributed on [0, 1]. Show that with probability 1,

$$\lim_{n \to \infty} \left(X_1 \cdot \dots \cdot X_n \right)^{\frac{1}{n}}$$

exists and compute its value.

- 4. Let X and Y be independent and suppose that each has a uniform distribution on (0, 1). Let $Z = \min\{X, Y\}$. Find the density $f_Z(z)$ for Z.
- 5. Show that the characteristic function φ of a random variable X is real if and only if X and -X have the same distribution.
- 6. Let X_i be i.i.d. random variables uniformly distributed on [0, 2]. Let $S_n = X_1 + \cdots + X_n$. Show that

$$\frac{3\sqrt{3}}{2}n^{\frac{1}{6}}\left(\sqrt[3]{S_n} - \sqrt[3]{n}\right) \to^w Z,$$

where Z is a standard normal random variable.

7. Let $v = \left(\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right)$ be a unit vector in \mathbf{R}^n . Consider the set A in \mathbf{R}^n be given by $A = \left\{ x \in \mathbf{R}^n : x_i \in \left[-\frac{1}{2}, \frac{1}{2}\right], \langle x, v \rangle \leq \frac{t}{2\sqrt{3}} \right\}.$

Prove that as the dimension $n \to \infty$,

$$Vol_n(A) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-\frac{x^2}{2}} dx + O(\frac{1}{\sqrt{n}}).$$

8. Assume $X_1, X_2, ..., X_n, ...$ are i.i.d. standard normal random variables. Show without using the law of the iterated logarithm that for any $\lambda > 1/2$,

$$\frac{1}{n^{\lambda}}(X_1 + \ldots + X_n) \to^{a.s.} 0$$