Probability Comprehensive Exam January 18, 2017

Student Number:
 \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Show that if X_{n} and Y_{n} are independent for $n=1,2, \ldots$ and $X_{n} \rightarrow^{w} X, Y_{n} \rightarrow^{w} Y$, where X and Y are independent, then $X_{n}+Y_{n} \rightarrow^{w} X+Y$.
2. Let X be a random variable with mean zero and finite variance σ^{2}. Prove that for every $c>0$,

$$
P(X>c) \leq \frac{\sigma^{2}}{\sigma^{2}+c^{2}}
$$

Hint: Combine the inequality $\mathbb{E}(c-X) \leq \mathbb{E}\left((c-X) \mathbf{1}_{\{X<c\}}\right)$ with the Cauchy-Schwartz inequality.
3. Let X_{1}, X_{2}, \ldots be i.i.d. random variables uniformly distributed on $[0,1]$. Show that with probability 1 ,

$$
\lim _{n \rightarrow \infty}\left(X_{1} \cdots \cdots X_{n}\right)^{\frac{1}{n}}
$$

exists and compute its value.
4. Let X and Y be independent and suppose that each has a uniform distribution on $(0,1)$. Let $Z=\min \{X, Y\}$. Find the density $f_{Z}(z)$ for Z.
5. Show that the characteristic function φ of a random variable X is real if and only if X and $-X$ have the same distribution.
6. Let X_{i} be i.i.d. random variables uniformly distributed on $[0,2]$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Show that

$$
\frac{3 \sqrt{3}}{2} n^{\frac{1}{6}}\left(\sqrt[3]{S_{n}}-\sqrt[3]{n}\right) \rightarrow^{w} Z
$$

where Z is a standard normal random variable.
7. Let $v=\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$ be a unit vector in \mathbf{R}^{n}. Consider the set A in \mathbf{R}^{n} be given by

$$
A=\left\{x \in \mathbf{R}^{n}: x_{i} \in\left[-\frac{1}{2}, \frac{1}{2}\right],\langle x, v\rangle \leq \frac{t}{2 \sqrt{3}}\right\} .
$$

Prove that as the dimension $n \rightarrow \infty$,

$$
\operatorname{Vol}_{n}(A)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-\frac{x^{2}}{2}} d x+O\left(\frac{1}{\sqrt{n}}\right)
$$

8. Assume $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ are i.i.d. standard normal random variables. Show without using the law of the iterated logarithm that for any $\lambda>1 / 2$,

$$
\frac{1}{n^{\lambda}}\left(X_{1}+\ldots+X_{n}\right) \rightarrow^{a . s .} 0
$$

