Probability Comprehensive Exam Spring 2018

Student Number:	
<i>Instructions:</i> Complete 5 of the 9 problems, and circle their numbers below – the uncircled problems will not be graded.	

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

$$\limsup_{n \to \infty} \frac{X_n}{\log n} < \infty \text{ a.s.}$$

2. Suppose f is a continuous function on [0, 1]. Use the Law of Large Numbers to prove that

$$\lim_{n \to \infty} \int_0^1 \cdots \int_0^1 f((x_1 \dots x_n)^{1/n}) dx_1 \dots dx_n = f\left(\frac{1}{e}\right).$$

- 3. Let X, Y be random variables with $\mathbb{E}|X| < \infty$, $\mathbb{E}|Y| < \infty$. If $\mathbb{E}(X|Y) = Y$ and $\mathbb{E}(Y|X) = X$ a.s., then X = Y a.s. Prove it.
- 4. Let X_1, \ldots, X_n be i.i.d. random variables with mean μ and variance $\sigma^2 < +\infty$. Let f be a function continuously differentiable at the point μ . Prove that the sequence of random variables

$$n^{1/2}\left(f\left(\frac{X_1+\dots+X_n}{n}\right)-f(\mu)\right)$$

converges in distribution to a normal random variable. What is the mean and the variance of the limit?

5. Let X_1, \ldots, X_n, \ldots be i.i.d. random variables with $\mathbb{E}X_1 = 0$ and $\operatorname{Var}(X_1) = 1$. Let $S_n = X_1 + \cdots + X_n$. Prove that

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} = +\infty.$$

6. Let (X_n) be an i.i.d. sequence of random variables with

$$\mathbb{P}(X_n = 1) = 1/2 = \mathbb{P}(X_n = -1).$$

Let (Y_n) be a bounded sequence of random variables such that $\mathbb{P}(Y_n \neq X_n) \leq e^{-n}$. Show that

$$\frac{1}{n}\mathbb{E}(Y_1 + \dots + Y_n)^2 \to 1 \text{ as } n \to \infty.$$

7. Let F_n, F be distribution functions such that $F_n \to F$ weakly. If F is continuous, show that

$$\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0.$$

- 8. Let (X_n) be an i.i.d. sequence of random variables. Show that $\mathbb{E}(X_1)^2 < \infty$ if and only if for every c > 0, $\mathbb{P}(|X_n| \ge c\sqrt{n}$ infinitely often) = 0.
- 9. Find an example of a random variable X with a density function but whose characteristic function ϕ_X satisfies

$$\int_{-\infty}^{\infty} |\phi_X(t)| \, \mathrm{d}t = \infty.$$