Probability Comprehensive Exam Aug 24, 2016

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Suppose $\left(X_{n}\right)$ is a sequence of random vectors such that for some sigma-algebra \mathcal{F}, one has X_{n} and \mathcal{F} independent for all n. If $X_{n} \rightarrow X$ almost surely, show that X and \mathcal{F} are independent.
2. Let X be a random variable with continuous density function f and $f(0)>0$. Let Y be a random variable with

$$
Y= \begin{cases}\frac{1}{X} & \text { if } X>0 \\ 0 & \text { otherwise }\end{cases}
$$

and Y_{1}, Y_{2}, \ldots be i.i.d. with distribution equal to that of Y. What is the value of the almost sure limit

$$
\lim _{n} \frac{Y_{1}+\cdots+Y_{n}}{n} ?
$$

3. Let X_{1}, X_{2}, \ldots be i.i.d. with

$$
\mathbb{P}\left(X_{1}=1\right)=1 / 2=\mathbb{P}\left(X_{1}=-1\right) .
$$

Let C be the set of factorials:

$$
C=\{k!: k \in \mathbb{N}\}
$$

Show that

$$
\lim _{n} \mathbb{P}\left(X_{1}+\cdots+X_{n} \in C\right)=0
$$

Hint. You may want to start by covering part of $[0, \infty)$ by small intervals. Let $\epsilon>0$ and $I>0$, consider intervals I_{1}, \ldots, I_{I}, where $I_{i}=[(i-1) \epsilon, i \epsilon)$, and show that for large n, at most two of the sets $I_{i} \cap(C / \sqrt{n})$ are nonempty.
4. Let (X, Y) be a normal vector in \mathbb{R}^{2} with mean zero and covariance matrix Σ, where

$$
\Sigma=\left(\begin{array}{cc}
5 & 1 \\
1 & 10
\end{array}\right)
$$

Find $\mathbb{E} X^{2} Y^{2}$.
5. Let ξ_{1} and ξ_{2} be independent random variables with characteristic functions $\varphi_{1}(u)=\frac{1-i u}{1+u^{2}}$ and $\varphi_{2}(u)=\frac{1+i u}{1+u^{2}}$ respectively. Find the probability that $\xi_{1}+\xi_{2}$ takes values in $(3,+\infty)$.
6. Let $\left\{A_{n}\right\}$ be an infinite collection of independent events. Suppose that $\mathbb{P}\left(A_{n}\right)<1$ for every $n \geq 1$. Show that $\mathbb{P}\left(A_{n}\right.$ i.o. $)=1$ if and only if $\mathbb{P}\left(\cup A_{n}\right)=1$.
7. Let X be a random variable taking values on the interval $[1,2]$. Find sharp lower and upper estimates on the quantity $\mathbb{E} X \cdot \mathbb{E} \frac{1}{X}$. Provide an example of a random variable for which the lower estimate is attained. Provide an example of a random variable for which the upper estimate is attained.

Hint. For the upper bound, justify and use the inequality

$$
\begin{gathered}
a b \leq \frac{1}{2}\left(\frac{a}{2}+b\right)^{2} \\
\mathbb{E} X \cdot \mathbb{E} \frac{1}{X} \leq \frac{1}{2}\left(\frac{1}{2} \mathbb{E} X+\mathbb{E} \frac{1}{X}\right)^{2}=\frac{1}{2}\left(\mathbb{E}\left(\frac{X}{2}+\frac{1}{X}\right)\right)^{2} .
\end{gathered}
$$

8. Show that for a sequence of random variables X_{n}, one has $X_{n} \rightarrow X$ in probability if and only if

$$
\mathbb{E}\left[e^{\min \left\{2,\left|X_{n}-X\right|\right\}}-1\right] \rightarrow 0
$$

as $n \rightarrow \infty$.

