Topology Comprehensive Exam August 31, 2016

Student Number:
 \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let $n<m$ be positive integers. Use Sard's theorem to show that any continuous map from S^{n} to S^{m} is homotopic to a constant map.
2. Let S be a smooth submanifold of a smooth manifold M, and let X, Y be vector fields on M that are tangent to S. Show that $[X, Y]$ is also tangent to S.
3. Recall that the standard embedding of $R P^{1}$ in $R P^{2}$ is the image of the equator under the 2-fold cover $\pi: S^{2} \rightarrow R P^{2}$ given by $\pi(x)=\pi(-x)$. Let X be the union of two real projective planes glued via the identity map of the standardly embeded $R P^{1}$ s. Compute the fundamental group of X.
4. Let $p \in \mathbf{R}^{3}$ be a point outside the x-axis. Let X be the complement of the x-axis in $\mathbb{R}^{3} \backslash\{p\}$. For a positive integer k let X_{k} be a k-sheeted covering space of X. Show that X_{k} is homeomorphic to $S^{1} \times \mathbf{R}^{2}$ with k points removed.
5. Let $f: M \rightarrow N$ be a smooth map without critical points, where M, N are connected n-dimensional smooth manifolds without boundary, and M is compact. Show that the induced map $f_{*}: \pi_{1}(M) \rightarrow \pi_{1}(N)$ is injective. Does the statement hold if M is not compact?
6. Let $D^{2}=\left\{x \in \mathbf{R}^{2}:|x| \leq 1\right\}$ and $S^{1}=\left\{x \in \mathbf{R}^{2}:|x|=1\right\}$. Let V be a smooth vector field on $X=D^{2} \times S^{1}$ such that
(i) if $x \in D^{2} \times\{t\}$, then $V(x)$ is not tangent to $D^{2} \times\{t\}$,
(ii) if $x \in \partial X$, then $V(x)$ is tangent to ∂X.

Show that V has a closed orbit, i.e. there is a flow line $f: \mathbf{R} \rightarrow X$ of V such that $f(t+P)=f(t)$ for some $P \in \mathbf{R}$ and all $t \in \mathbf{R}$.
7. Suppose α is a closed 2 -form on a 4-dimensional sphere S^{4}. Show that the 4 -form $\alpha \wedge \alpha$ vanishes at some point $x \in S^{4}$.
8. Let Y be the wedge of two circles a and b, and let X be connected covering space of Y. Assume that among the lifts of a exactly one is a loop. Show that the every deck transformation of the covering $X \rightarrow Y$ is trivial.

