Topology Comprehensive Exam August 31, 2016

Student 1	Number:	
-----------	---------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let n < m be positive integers. Use Sard's theorem to show that any continuous map from S^n to S^m is homotopic to a constant map.
- 2. Let S be a smooth submanifold of a smooth manifold M, and let X, Y be vector fields on M that are tangent to S. Show that [X, Y] is also tangent to S.
- 3. Recall that the standard embedding of RP^1 in RP^2 is the image of the equator under the 2-fold cover $\pi : S^2 \to RP^2$ given by $\pi(x) = \pi(-x)$. Let X be the union of two real projective planes glued via the identity map of the standardly embedded RP^1 s. Compute the fundamental group of X.
- 4. Let $p \in \mathbf{R}^3$ be a point outside the *x*-axis. Let *X* be the complement of the *x*-axis in $\mathbb{R}^3 \setminus \{p\}$. For a positive integer *k* let X_k be a *k*-sheeted covering space of *X*. Show that X_k is homeomorphic to $S^1 \times \mathbf{R}^2$ with *k* points removed.
- 5. Let $f: M \to N$ be a smooth map without critical points, where M, N are connected *n*-dimensional smooth manifolds without boundary, and M is compact. Show that the induced map $f_*: \pi_1(M) \to \pi_1(N)$ is injective. Does the statement hold if M is not compact?
- 6. Let $D^2 = \{x \in \mathbf{R}^2 : |x| \leq 1\}$ and $S^1 = \{x \in \mathbf{R}^2 : |x| = 1\}$. Let V be a smooth vector field on $X = D^2 \times S^1$ such that
 - (i) if $x \in D^2 \times \{t\}$, then V(x) is not tangent to $D^2 \times \{t\}$,
 - (ii) if $x \in \partial X$, then V(x) is tangent to ∂X .

Show that V has a closed orbit, i.e. there is a flow line $f : \mathbf{R} \to X$ of V such that f(t+P) = f(t) for some $P \in \mathbf{R}$ and all $t \in \mathbf{R}$.

- 7. Suppose α is a closed 2-form on a 4-dimensional sphere S^4 . Show that the 4-form $\alpha \wedge \alpha$ vanishes at some point $x \in S^4$.
- 8. Let Y be the wedge of two circles a and b, and let X be connected covering space of Y. Assume that among the lifts of a exactly one is a loop. Show that the every deck transformation of the covering $X \to Y$ is trivial.