Topology Comprehensive Exam Spring 2018

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. We can regard $\pi_{1}\left(X, x_{0}\right)$ as base point preserving homotopy classes of maps of ($S^{1}, p t$) to (X, x_{0}). Let $\left[S^{1}, X\right]$ be the set of homotopy classes of maps S^{1} to X (not necessarily base point preserving). There is a natural map

$$
\Psi: \pi_{1}\left(X, x_{0}\right) \rightarrow\left[S^{1}, X\right]
$$

that just ignores the base points. Show that Ψ is onto if X is path connected. Also show that $\Psi([\gamma])=\Psi([\lambda])$ if and only if there is some $g \in \pi_{1}\left(X, x_{0}\right)$ such that $[\gamma]=g^{-1}[\lambda] g$.
2. Let G and H be groups and X and Y topological spaces such that $\pi_{1}\left(X, x_{0}\right) \cong G$ and $\pi_{1}\left(Y, y_{0}\right) \cong H$. If X is a finite connected 2-complex, then show that for any homomorphism $\phi: G \rightarrow H$ there is continuous map $f: X \rightarrow Y$ such that $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow$ $\pi_{1}\left(Y, y_{0}\right)$ is given by ϕ under the isomorphisms above.
3. Use algebraic topology to show that the free group of rank 2 has a normal subgroup of index 3 and a non-normal subgroup of index 3.
4. Given two points x and y in a connected smooth manifold M, show there is a compactly supported isotopy of M from $\phi_{0}: M \rightarrow M$ to $\phi_{1}: M \rightarrow M$ such that ϕ_{0} is the identity on M and $\phi_{1}(x)=y$.
Hint: If helpful, you may assume without proof that in a connected manifold any two points can be connected by a smooth injective path with nonzero derivative at each point.
5. Let $f: M \rightarrow N$ and $g: N \rightarrow M$ be two smooth maps between compact oriented manifolds (without boundary) of the same dimension. If N is connected and $g \circ f$ is a diffeomorphism show that f and g are both diffeomorphisms.
6. Let $M(n, \mathbf{R})$ be the set of all n by n matrices (recall that it can be identified with $\mathbf{R}^{n^{2}}$ by choosing an ordering of the entries of the matrix). Let $O(n)$ be the subset of $M(n, \mathbf{R})$ consisting of matrices satisfying $A^{t} A=I d$ where A^{t} is the transpose of A and $I d$ is the identity matrix. Show that $O(n)$ is a manifold and compute its dimension. Describe the tangent space to the identity of $O(n)$.
7. Let S_{1} and S_{2} be two submanifolds of M (all manifolds are without boundary). Define what it means for S_{1} to be transverse to S_{2} and if they are transverse show carefully that $S_{1} \cap S_{2}$ is a submanifold of M of $\operatorname{dimension} \operatorname{dim}\left(S_{1}\right)+\operatorname{dim}\left(S_{2}\right)-\operatorname{dim}(M)$.
8. Let $\alpha_{1}, \ldots, \alpha_{k}$ be 1 -forms on a smooth manifold M show that they are linearly independent if and only if at some point $\alpha_{1} \wedge \ldots \wedge \alpha_{k} \neq 0$.

